По этой книге было снято несколько фильмов, в том числе одноимённый художественный фильм 2007 года, в России известный как Плоский Мир.
=======================================================
Итак, в многомерном пространстве координаты любой точки P задаются относительно начала координат выражением: P = (x>1, x>2, … x>n), а вектор соединяющий начало координат – точку (0, 0,0 … 0) и точку P именуется радиус вектором например A, B, C его компоненты – это координаты по осям: x1, x2, … xn
интересно заметить, что как в двумерном, трёхмерном пространстве, так и многомерном пространстве радиус векторы можно складывать – вычитать покомпонентно:
A + B = (a>1 + b>1, a>2 + b>2 …. a>n + b>n)
Так например, в физике происходит сложение перемещений, скоростей либо сил.
А что будет при умножении векторов? Да, такая операция возможна. Познакомимся со скалярным произведением двух векторов, которое происходит также по каждой компоненте отдельно, а результат – число образуемое путем сложения результатов таких произведений:
A * B = a>1 * b>1 + a>2 * b>2 + …. + a>n * b>n
Попробуем умножить вектор a = (1,1,1) на самого себя
(1,1,1) * (1,1,1) = 1*1 +1 *1 +1 * 1 = 3 или квадрат модуля вектора обозначаемого как |a|>2. Не принято говорить длина вектора – принято говорить модуль вектора. Легко вычислить, что в n -мерном кубе с ребром a длина наибольшей диагонали равна a * √n в самом деле в квадрате это a * √2 а для случая куба a * √3.
В чём же состоит смысл скалярного произведения?
Например, в физике вектор силы умножить на вектор пройденного путем есть совершенная над телом работа. Если эти вектора со-направлены, то результат будет максимальный, если перпендикулярны, – то нулевой (санки нельзя ускорить, если Вы прикладываете силу поперёк их движения).
======================================================
Глава 2 Удивительный мир симметрии
Вечером на ручных часах Татьяны раздалось бип-бип-бип и появилось сообщение:
Предл. Встрет. завтра 12:00 в «Собачьих бутербродах» у М. Г@ // Борщ. Ок?
Татьяна ответила ОК! и сразу увидела результат голосования других ребят: Матвея и Артура, младшего одиннадцатилетнего брата Татьяны, – все они были согласны. Матвей был самым юным участником творческой группы, представителем той самой целевой группы, для которой необходимо отыскать доказательство. Если ты сможешь объяснить всё это одиннадцатилетнему школьнику, то будь уверен, сможешь объяснить миллиардам других людей с обычной школьной подготовкой! – убеждала она Матвея. И Матвей хорошо подумав, получив еще раз заверения от сохранении строжайшей конфиденциальности от Татьяны, согласился.
Кафе быстрого питания было расположено прямо у выхода метро, напротив университета в этом месте обычно любил назначать встречи Борщов, сопровождая это словами: конечно пища там лишь условно съедобная, но зато место удобное и обстановка уютная, подходящая для диалога.
Он пунктуально пришел на встречу за десять минут до начала и, заняв пустой столик у окна, принялся читать только что изданную коллективную монографию, где наряду с прочими работами была и его: «Социологические методы идентификации судебной коррупции». За окном бурлила предновогодняя жизнь, под аккомпанемент лёгкого пушистого снега и солнышка (вот уже настоящий предновогодний подарок! – отметил про себя Борщов), прохожие и автомобили мелькали в окне, а их полупрозрачные отражения – в самом кафе. Методично раздавался голос кассиров на выдаче:
– Номер восемьдесят пять, один Американо и чизбургер, номер сто четырнадцатый салат из крабов, номер сто одиннадцать: картошка фри…