Если безбилетник сидит на месте p в ряду q, то проводник – робот, следующий из вершины 1/1 всё равно его обнаружит, если будет придерживаться несложного алгоритма. Итак, контролёр входит в зрительский зал с Северо-Запада, как раз в месте размещения 1/1.

Контролёр делает один шаг на Восток к месту 1/2;

далее шагает в Юго-Западном направлении к месту 2/1;

после этого делает ещё один шаг на Юг к месту 3/1;

затем совершает два шага в Северо-Восточном направлении к местам 2/2 и 1/3;

после чего совершает один шаг на Восток к 1/4;

потом три шага в Юго-Западном направлении, проверяя места 2/3, 3/2, 4/1…

И таким образом контролёр последовательно исследует зрительский зал, дрейфуя как челнок, то в Юго-Западном, то в Северно-Восточном направлениях, охватывая контролируемую территорию всё расширяющимся на один шаг с каждым обходом треугольником, вершина которого размещается в Северо-Западной части зала.


Рис. 1.3. Рациональные числа можно «сосчитать». Если робот – контролёр двигается по маршруту как указано на рисунке, то он найдёт безбилетника в ряде q на месте p, что соответствует дроби p/q.


Вместе с тем, действительные числа сосчитать невозможно это множество образует континуум. Между двумя близкими рациональными числами всегда найдётся сколько угодно много других иррациональных чисел. Например, в треугольнике средняя линяя равномощна основанию. Это следует понимать так, что каждой точке на средней линии треугольника соответствует точка на его основании, и наоборот.

Основные математические знания

Трёх и n- мерная система координат

Представим себе, что Вы управляете дроном. Пульт управления необычен. Он имеет кнопочки, задающие движения:


Рис. 1.4. Управление дроном.


Дрон может двигаться:

на Север, на Юг,

на Запад

на Восток

Вниз

Вверх

Сам дрон имеет гирокомпас и отлично ориентируется в пространстве, ожидая Ваших команд.

Допустим, Вам требуется доставить пакет с вакциной от корнавируса на 10-ый этаж и аккуратно подать его в окно. Вы находитесь в начале координат, а пункт назначения – 10 м на Восток, 10 м. на Север, и 20 м. вверх. Эти координаты можно задать так:

Пункт назначения точка P = (10, 10, 20) в координатных осях

При этом подразумевается, что мысленно мы используем оси:

Запад -Восток – ось Х

Юг- Север – ось Y

Низ-Верх – ось Z

А теперь, допустим, Вы производите запуск с балкона небоскрёба.

Если бы окно находилось по отношению к Вам на 20 м. западнее, на 5 м. южнее и на 15 м. ниже Вашего балкона, то координаты точки P = (-10, -5, -15)

Это так называемая Декартова система координат по имени математика и философа Рене Декарта. Наглядный двумерный случай Декартовой системы координат – это шахматная доска, это плоская карта местности. Каждая точка однозначно определяется двумя координатами.

Как бы Вы объяснили двумерному существу?

Как бы Вы объяснили двумерному существу третье измерение – высоту? Предположим, что в совершенно плоском мире Вы ведёте диалог с философом, имеющим богатое творческое воображение, Вы принялись бы объяснять, как можно повернуть ботинок, больше напоминающий в этом случае стельку от обуви, в третьем измерении и сделать из правого ботинка левый и наоборот.

Точно так же трёхмерный ботинок можно разверзнуть в четырехмерном пространстве и сделать правый левым, а левый – правым.

====== Знаете ли Вы что такое Флатландия? ======

«Флатла́ндия» (англ. «Flatland: A Romance of Many Dimensions») – роман Эдвина Э. Эбботта, который вышел в свет в 1884 году. Этот научно-фантастический роман считается полезным для людей, изучающих, например, понятия о других пространственных измерениях или гиперпространствах. Как литературное произведение роман ценится из-за сатиры на социальную иерархию викторианского общества. Айзек Азимов в предисловии к одной из многих публикаций романа написал, что это «лучшее введение в способ восприятия измерений, которое может быть найдено».