Говорят, будто Галилей, будучи совсем еще молодым исследователем, аспирантом по нашим понятиям, бросал с Пизанской башни, которая уже тогда была наклонной, различные предметы и отмечал время их падение по биению собственного пульса. И таким образом заметил, что их ускорение не зависит от того материала, из которого они сделаны.
Сейчас это кажется банальным, но не в ту эпоху. Его опыт означал покушение на аристотелевские основы движения, согласно которым каждый предмет движется в соответствии с природой тех элементов, которые входят в его состав. Элементов четыре, как учил Аристотель: земля, вода, воздух и огонь. В чистом виде, конечно, эти элементы встречаются нечасто, по большей части они смешаны в телах в различных пропорциях, но порождающая все движения движущая сила отвечает преобладающему в составе тела элементу и проявляется в том, что каждый элемент в силу своей природы стремится занять положенное ему место. Земля тяжелая, она – внизу, следовательно, предметы, составленные из нее или преимущественно из нее, стремятся вниз. Над землей, объемля ее, расположена вода, поэтому все вещи, в состав которых она входит, будут двигаться к своему местоположению выше земли, но ниже воздуха, который, естественно, легче воды. Ну и над всем царит огонь, и все «огненные» вещи поднимаются вверх, горячий воздух, например. Есть еще эфир, но он выше воздуха и потому недоступен и малопонятен, он никуда не движется, а все проникает.
Итак, бросая свои шары с башни, Галилей заметил, что все они достигают подножия ее за определенное количество ударов пульса. И, следовательно, закономерность в падении кроется совсем не там, где ее искали, не в разделении движения по сортам своих элементов и по своим движущим силам, а совсем в другом – в одинаковом ускорении падающих тел. Различные по размерам и весам шары падают с одинаковым ускорением (если исключить сопротивление воздуха). Закономерность внезапно открылась в однообразии, в повторяющемся независимо от различных условий правиле. И он вывел это правило, связав между собой не вещи по их происхождению, их природе, составу элементов, весу и еще по множеству разнообразных свойств, а вовсе не зависимо от всего этого. Он понял, что для описания времени ему требуется совсем не эти разнообразные и неизмеримые вещи, а всего лишь соотношение между пройденным телом расстоянием и затраченным на это прохождение временем.
Стоит задержаться немного на этом моменте и подумать, что именно произошло и почему такое кажущееся простым наблюдение молодого ученого оказалось таким необыкновенно важным. Стало общим положение, что современная наука создана в XVII веке и началась она с Галилея. Однако следует уточнить. Наука существовала и до Галилея, он и сам ее изучал и преподавал. Она состояла в основном из евклидовой геометрии и других математических дисциплин. Более того, математика и в особенности геометрия применялась и к изучению природы, но – заметим! – в довольно ограниченных пределах. Изучались статические соотношения объектов, находились посредством геометрических приемов их центры тяжести, закономерности равновесия. Фактически исследовались созданные еще древними инструменты: клин, наклонная плоскость, блок, рычаг. Это и есть механика того времени. Но огромная область реального окружающего мира – движение тел – оставалась за пределами точного знания. Суждения об этой области были крайне приблизительными, основывались на общих соображениях аристотелевской картины мира, о которых выше говорилось.
Что лежит в основе любого измерения? Некий эталон, образец, прикладываемый к измеряемому телу. Иначе говоря, сравнение уже имеющейся одной единицы с нужным объектом, который состоит из некоторого количества этих единиц. Всякие футы, локти, сажени, пяди, т. е. всегда готовые к применению, примерно одинаковые по размеру части человеческого тела употреблялись на практике для измерения размеров тел. В науке они превратились в более строгие меры. Легко измерить неподвижный объект, но если он совершает даже простые движения, то чем их зафиксировать, какой образец «приложить»?