Ещё одним из вопросов философии математики является вопрос о собственной (онтологической) возможности выделения оснований математики, Первый в истории философии ответ на данный вопрос дал Платон в диалоге «Парменид» в форме тезиса «теория соотношения единого и многого образует мир». Этот тезис почти дословно представляет определение множества Кантора.
Единение совокупности семантических понятий образует понятие виртуального мира.
Теория понятий считает, что, занявшись философией математики, Кантор осознал, что материальность реальна, и это осознание он представил определением понятия множества, что не исключает возможность использования в теории множеств (как и во многих других реально создаваемых в реальном времени теориях) понятия реального времени (Real Time). В теории понятий истинность утверждения «сегодня пятница» возрастает по мере её приближения. Аристотель отдыхает. Работает иная, диалектическая логика.
Кроме того, Кантор задумался, как бы абстрактную высшую математику, которой он занимался всю жизнь, можно бы было применить, использовать в быту, в обычной человеческой деятельности. В работе https://studfiles.net/preview/6718656 довольно подробно рассмотрены философско-религиозные аспекты генезиса теории множеств Г. Кантора [2].
Кантор пришёл к заключению, что для превращения математики в содержательную прикладную дисциплину необходимо в математике рассматривать предметы мышления наряду с прочими предметами созерцания. Кантор пришел к выводу концепции – аксиоме, что в любой науке (не исключая и математику) обобщающее понятие может представлять всю совокупность определяющих его инициальных понятий, и сформулировал это утверждение в виде определения понятия множества. Таким образом, проблемой мышления в конкретных науках является обнаружение как исходных, инициальных, так и обобщающих понятий. Кантор использовал обобщающие понятия в качестве типа данных в прикладных дисциплинах.
Сущность, определяемая определением понятия множества, учитывает, как естественные изменения предметов созерцания, так и естественные изменения естественного интеллекта и даже учитывает изменения самой математики в процессе её развития. Сплошная диалектика. Предлагая определение понятия множества, Кантор превращает абстрактную математику в естественнонаучную дисциплину. Предложив определение понятия множества, Кантор поставил математику с ног на голову. Даже коллеги перестали понимать диалектику его работ. Кантор отметил в одном из писем: «…согласно Миттаг-Леффлёру, я должен подождать до 1984 года, что кажется мне слишком большой просьбой!.. Но конечно, отныне я никогда ничего не хочу знать об Acta mathematica». Теория семантических понятий трактует определение понятия множества как постановку задачи мышлению нахождения алгоритма построения множества!
Конец ознакомительного фрагмента.