К сожалению, Гильберт не определяет, что есть аксиоматика. Он считает, что и в повседневной жизни используются методы и возникают понятия, требующие высокой степени абстракции, понимаемые только с помощью неосознанного, интуитивного применения аксиоматических методов. Некоторое аксиоматическое определение, которое может быть использовано для определения различных новых сущностей, предлагает Кантор.
4. Диалектическая теория семантических множеств
«Мно́жество – один из ключевых объектов математики, в частности теории множеств. «Множество есть многое, мыслимое нами как единое» (Георг Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие – значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество – это, пожалуй, самое широкое понятие математики и логики). Существует два подхода к понятию множества.
«Наивная теория множеств» Георга Кантора. Дать определение чему-либо это значит выразить понятие через ранее определенные. При этом должны быть некоторые базовые понятия, которые формально не определены. Множество может быть одним из таких понятий. В рамках наивной теории множеств множеством считается любой четко определенный набор объектов. Кантору принадлежит также следующая характеристика понятия «множество»: Множество – это объединение определённых, различных объектов, называемых элементами множества, в единое целое. Однако вольное использование наивной теории множеств приводит к некоторым парадоксам, в частности к парадоксу Рассела».
Это текст из «Викизнания».
До XIX века считалось, что точного определения множества нет. Множеством считалось любое скопление предметов. В конце XIX века Георг Кантор определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Теория понятий считает это утверждение ошибочным, абзацем выше приведено дословное несколько иное канторовское определение понятия множества.
Множество объектов, обладающих свойством A (x)!, обозначается {x|A (x)}!. Если некое множество Y= {x|A (x)}!, то A (x)! называется характеристическим свойством множества Y!. Данная концепция привела к парадоксам. После этого теория множеств была некорректно аксиоматизирована. На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело – Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).
На день сегодняшний имеются и другие определения понятия множества.
Мно́жество – одно из ключевых понятий математики, в частности теории множеств и логики.
Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть несводимое к другим понятиям, а значит, и не имеющее определения; для его объяснения используются описательные формулировки, характеризующие множество как совокупность различных элементов, мыслимую как единое целое. Также возможно косвенное определение через аксиомы теории множеств. Множество может быть пустым и непустым, упорядоченным и неупорядоченным, конечным и бесконечным, бесконечное множество может быть счётным или несчётным. Более того, как в наивной, так и в аксиоматической теориях множеств любой объект обычно считается множеством.
Теория понятий предлагает и использует несколько иное определение множества не в противоречии с наивным определением Кантора.
Диалектика теории множеств