lкр1> lкр2.

Предположим, что вероятность совершения ошибки первого рода или уровень значимости равен значению а. При условии справедливости основной гипотезы Н0, сумма вероятностей того, что значение статистического критерия L будет больше значения lкр1 или меньше значения lкр2, равна заданному уровню значимости, т.е. P(L>lкр1)+(L

Выбор критической области осуществляется исходя из вида конкурирующей гипотезы Н1. При этом применяются следующие правила:

1) правосторонняя критическая область выбирается в том случае, если Н1:>;

2) левосторонняя критическая область выбирается в том случае, если Н1:‹;

3) двусторонняя критическая область выбирается в том случае, если Н1:≠.

Предположим, что заданы следующие параметры:

1) статистический критерий L;

2) критическая область W, где H0 отклоняется;

3) область принятия гипотезы

где H0 не отклоняется;

4) вероятность совершить ошибку первого рода a;

5) вероятность совершить ошибку второго рода β.

Тогда справедливо утверждение о том, что выражение

является вероятностью того, что статистический критерий L попадёт в критическую область, если верна гипотеза H.

При построении критической области учитываются два требования:

1) вероятность того, что статистический критерий L попадёт в критическую область, если верна Н0, равна а:

данное равенство задаёт вероятность совершения ошибки первого рода;

2) вероятность того, что статистический критерий L попадёт в критическую область (область отклонения гипотезы Н0 в пользу гипотезы Н1), если верна гипотеза Н1:

данное равенство задаёт вероятность принятия правильной гипотезы.

Мощностью статистического критерия называется вероятность попадания данного критерия в критическую область, при условии, что справедлива конкурирующая гипотеза Н1, т. е.выражение 1-β является мощностью критерия.

Если уровень значимости уже выбран, то критическую область следует строить так, чтобы мощность критерия была максимальной. Выполнение этого требования обеспечивает минимальную ошибку второго рода, состоящую в том, что будет принята неправильная гипотеза.

22. Проверка гипотезы о значимости коэффициентов модели парной регрессии

Проверкой статистической гипотезы о значимости отдельных параметров модели называется проверка предположения о том, что данные параметры значимо отличаются от нуля.

Необходимость проверки гипотез о значимости параметров модели вызвана тем, что в дальнейшем построенную модель будут использовать для дальнейших экономических расчётов.

Предположим, что по данным выборочной совокупности была построена линейная модель парной регрессии. Задача состоит в проверке значимости оценок неизвестных коэффициентов модели, полученных методом наименьших квадратов.

Основная гипотеза состоит в предположении о незначимости коэффициентов регрессии, т. е.

Н0:β0=0, или Н0:β1=0.

Обратная или конкурирующая гипотеза состоит в предположении о значимости коэффициентов регрессии, т.е.

Н1:β0≠0, или Н1:β1≠0.

Данные гипотезы проверяются с помощью t-критерия Стьюдента.

Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают со значением t-критерия, которое определяется по таблице распределения Стьюдента и называется критическим.

Критическое значение t-критерия зависит от уровня значимости и числа степеней свободы.

Уровнем значимостиа называется величина, которая рассчитывается по формуле:

а=1-γ,

где γ – это доверительная вероятность попадания оцениваемого параметра в доверительный интервал. Значение доверительной вероятности должно быть близким к единице, например, 0.95, 0.99. Следовательно, уровень значимости