Метилирование – это присоединение одного атома углерода и трех атомов водорода (называемых метильной группой CH>3) к другой молекуле. В организме человека за секунду происходит около миллиарда реакций метилирования. От метилирования зависит процесс выработки энергии, гормональный баланс, иммунный ответ, процессы восстановления нервов, хрящей, ДНК, баланс нейротрансмиттеров, скорость старения организма, стабильность химического состава тела, сохранение памяти, и, что очень важно, – риск сердечно-сосудистых и онкологических заболеваний, и многое другое. Метильные группы осуществляют контроль: процессов воспаления, детоксикации токсичных микроорганизмов, выработки глутатиона, производства лимфоцитов, процессов экспрессии и репрессии генов, стресс-реакции организма и т. д. Таким образом крайне важно, чтобы метилирование происходило с максимальной эффективностью, так как от него зависит слишком большое количество химических реакций в организме. Возникает вопрос: а при чем здесь гомоцистеин? Дело в том, что эффективность метилирования как раз определяют по уровню гомоцистеина. Желательно, чтобы он был меньше 8 ммоль/л, хотя некоторые лаборатории прописывают как норму значительно более высокие значения. Правда, в последние годы происходит ревизия нормы гомоцистеина и уменьшение ее верхнего значения до 12 мкмоль/л.
Считается, что гены даны человеку при рождении, и изменить уже ничего нельзя. Правда техническая возможность таких изменений в настоящее время существует, но вмешиваться в этот процесс на данном этапе очень опасно ввиду неизученности плейотропного эффекта, оказываемого каждым геном. Но как выяснилось сравнительно недавно, гены можно включать и выключать, можно усиливать их действие и можно уменьшать их активность. Более того, большинство генов, находящихся в ядерном ДНК во всех клетках, почти все время выключены. В противном случае гены, находящиеся в клетках, например, мышц, стали бы производить в них и белки, необходимые для формирования зубов. Все клетки одного человека обладают одной и той же ДНК, и, следовательно, одними и теми же генами. Различия между клетками заключаются в том, какие конкретно гены активны и насколько они активны. Таким образом, в каждый конкретный момент в клетке активны лишь те гены, которые ей в этот момент необходимы, остальные гены инактивированы. Включение и выключение генов производится различными методами, один из которых заключается в присоединении к определенным участкам ДНК метильных меток. Более конкретно, при метилировании CH3 добавляется в С5 позиции к цитозиновому кольцу, являющемуся частью CpG—динуклеотида (два нуклеотида соединяясь путем конденсации образуют динуклеотид). В дальнейшем, возможно, ферменты окислят метилированный цитозин и в результате деметилирования превратят его обратно в цитозин. Это и есть метилирование ДНК, которое осуществляется белками, называемыми метилтрансферазами. Метилирование ДНК инактивирует экспрессию эндогенных ретровирусных генов, встроенных в геном хозяина, и тем самым нейтрализует их. Но самое главное – метилирование ДНК оказывает самое непосредственное влияние на развитие практически всех типов онкозаболеваний. Установлено, что метилирование в раковых клетках сильно отличается от нормальных в основном за счет деметилирования генома и локального гиперметилирования в области генов-онкосупрессоров, что приводит к их блокированию. Вообще метилирование ДНК является важным маркером для диагностики онкологии ввиду следующих причин:
– Метилирование – одно из ранних событий в канцерогенезе.