Операция сложения по модулю 2 $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ выполняется побитово между входным вектором $\boldsymbol {x} $ и вектором $\boldsymbol {p} $. Результат этой операции используется для изменения состояния каждого кубита в системе посредством вращения соответствующего кубита на определенный угол, определенный вектором $\boldsymbol {p} $.


Пример:

Предположим, у нас есть система из 3 кубитов. Тогда вектор $\boldsymbol {p} $ может иметь размер $n = 3$ и содержать углы вращения для каждого кубита: $\boldsymbol {p} = (p_1, p_2, p_3) $.

Например, $\boldsymbol {p} = \left (\frac {\pi} {4}, \frac {\pi} {3}, \frac {\pi} {2} \right) $. Здесь первый кубит поворачивается на угол $\frac {\pi} {4} $, второй кубит поворачивается на угол $\frac {\pi} {3} $, а третий кубит поворачивается на угол $\frac {\pi} {2} $. Эти углы влияют на изменение состояния кубитов после применения операции сложения по модулю 2.


Переменная $\boldsymbol {p} $ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ задает набор фиксированных параметров для вращения кубитов и влияет на изменение их состояний в процессе выполнения операции. Значения и комбинации параметров $\boldsymbol {p} $ могут быть использованы для достижения определенной функциональности или решения конкретных задач.

Определение переменной $n$

Определение переменной $n$ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $:


В формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $, переменная $n$ представляет собой количество кубитов в системе. Она определяет размерность и масштаб системы, на которую применяется операция.


Количество кубитов $n$ является целым числом и указывает на общее количество кубитов, на которых применяется формула $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $. Данное значение может различаться в разных квантовых системах, а его выбор зависит от требуемой конфигурации и функциональности квантовой системы.


Переменная $n$ оказывает влияние на различные аспекты формулы $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $, включая размерность входных данных $\boldsymbol {x} $, размерность наборов параметров $\boldsymbol {\theta} $ и $\boldsymbol {p} $, а также на размерность состояния системы кубитов.


Пример:

Если у нас есть система из 4 кубитов, то переменная $n$ будет равна 4. Это означает, что формула $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ будет применяться к системе из 4 кубитов, и каждый кубит будет иметь свое состояние и вклад в общий результат.


Переменная $n$ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ определяет размер и характеристики системы кубитов, на которую применяется операция. Вводя переменную $n$, мы имеем возможность адаптировать формулу к разным системам с разными количествами кубитов и реализовывать различные квантовые алгоритмы и задачи.

Определение оператора Адамара

Определение оператора Адамара ($H^ {n} $) в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $:


Оператор Адамара $H^ {n} $ является одним из основных операторов в квантовой информатике и применяется к системе из $n$ кубитов. Он приводит каждый кубит в равновероятное суперпозиционное состояние.


Определение оператора Адамара для системы из $n$ кубитов:


$$H^ {n} = \frac {1} {\sqrt {2^ {n}}} \sum_ {\boldsymbol {y}} (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} |\boldsymbol {y} \rangle,$$


где:

– $\boldsymbol {y} $ – битовые строки длины $n$

– $\boldsymbol {x} \cdot \boldsymbol {y} $ – скалярное произведение битовых строк $\boldsymbol {x} $ и $\boldsymbol {y} $