Известный русский сатирик Аркадий Аверченко (1881–1925) в рассказе «Бельмесов» рисует такую картину.

«Идет экзамен. Инспектор Бельмесов:

– Кувшинников!.. Сколько будет пятью шесть?

– Тридцать.

– Правильно, молодец. Ну, а сколько будет, если помножить пять деревьев на шесть лошадей?

– …Тоже… тридцать…

– Но тридцать чего?

У Кувшинникова… волосы на голове и даже уши затрепетали: «Тридцать… лошадей».

– А куда же девались деревья? Садись…

– Кулебякин! Ну… ты нам скажешь, что такое дробь?

– Дробью называется часть какого-нибудь числа.

– Ты так думаешь? Ну, а если я набью ружье дробью, это будет часть какого числа?

– То дробь не такая, – улыбнулся бледными губами Кулебякин, – то другая.

– …А вот если человек танцует и ногами дробь выделывает – это какая же?» [12. С. 288–290].

Критически мыслящий читатель спросит: «Ну и зачем вы приводите умствования экзаменатора Бельмесова? Какое это имеет отношение к истории появления искусственного интеллекта?» А вот какое! Вся технология искусственного интеллекта, логика его «мышления» строится на прочном математическом фундаменте программирования, на творческом математическом мышлении. На понимании того, что математика есть наука о пространственных формах и количественных отношениях; она требует ответа на вопросы задач в формах абстрактно-числовых, а не чувственно-вещественных. Надо четко понимать границы применения математики в научных поисках. Не только математика помогает создавать и совершенствовать производственные технологии, но и они (технологии) вызывают к жизни новые математические дисциплины. К примеру, именно работа над искусственным интеллектом породила такие направления в математике, как теория информации, дискретная (конечная) математика, теории игр, графов, теория оптимального управления и пр.

Учить математическому мышлению надо со школьной скамьи. Инспектор Бельмесов своими «умными», а фактически – провокационными вопросами, создает не проблемную дидактическую[5]ситуацию, не учит математической логике, а отбивает всякое уважение к математике. Не научив самостоятельно, математически-конкретно мыслить в процессе обучения, глупо требовать этого от школьников на экзамене.

Дважды два четыре – и никак иначе! «А что? Разве неправильно?» – удивится учитель математики.

«Вы уверены, – спрашивает их Э. В. Ильенков, – что это несомненная и бесспорная истина? Да? В таком случае из вас никогда не вырастет математик… «Абсолютной и бесспорной» эта истина остается до тех пор, пока умножению (сложению) подвергаются абстрактные единицы (одинаковые значки на бумаге)… Сложите (фактически – слейте) в реальной жизни вместе две и две капли воды (уже конкретные вещественные единицы – О. П.) – и вы получите все, что угодно, но не четыре. Может быть, одну каплю, а может, – сорок четыре брызга» [13. С. 51]. «Что вы детям мозги забиваете! – окончательно рассердится учитель-формалист. – Причем здесь какие-то капли воды? Загляните, наконец, в таблицу умножения! Для счетчика-формалиста 2×2=4 абсолютно верно. А для физика-экспериментатора, для химика, производящего опыты? Для точных наук математика – основа основ, но это их рабочий инструмент, а не догма. Берет ученый-химик два (2) литра воды, и два (2) литра спирта, сливает (т. е. 2+2) в один сосуд и … получает не четыре (4) литра жидкости, а меньше (<). Подобное случается с физиком: при синтезе (сложении) скрупулёзно просчитанного числа (!) атомов в ядерных реакциях происходит уменьшение исходного количества атомов. Мало того, наблюдается (вопреки формальной математике) так называемый дефект массы – т. е. уменьшение массы вещества…» в процессе опытов