Схема 3 [53]


Информационные процессы могут быть рассмотрены и как превращенная форма практически реализуемых человеческих отношений, и как фактор социальной самоорганизации социума и управления (самоуправления). Социальная информация является необходимым условием интеграции и гомеостаза[53] самоорганизующейся социальной целостности. Существует зависимость интегрального качества любой самоорганизующейся системы, эффективности ее функционирования, жизнеспособности и сопротивляемости внешним неблагоприятным воздействиям от качества ее информационной инфраструктуры и адекватности циркулирующей информации критериям устойчивости развития системы. Нарушение этого принципа чревато внутренними и внешними противоречиями, болезненными последствиями для социальной макро- и микросистемы.

Соотношение понятий информация, данные, знания. Понятия – «информация», «данные», «знания» часто используются как синонимы, в то время как их смысловое содержание различно.

Выше уже были приведены примеры того, как определялось понятие информации в трудах известных ученых – Н. Винера, А.И. Берга, В.М. Глушкова. Несмотря на различие этих определений, информация в них – как знак содержания, которое является предметом сообщения, направленного от источника к приемнику (например, источник – внешний мир, а приемник – субъект восприятия). Предметом сообщения может быть информация количественной (статистической), семантической и прагматической меры.

Знания и данные – формы представления информации, призванные способствовать повышению эффективности информационно-обменных процессов, приводящие информацию к удобному для передачи и восприятию виду.

Между понятиями «знания» и «данные» можно выделить отношения иерархии. Знания – результат преобразования данных. Одни и те же сведения могут выступать как данные, если в результате их преобразования получаются новые сведения, выступающие как знания, но могут пониматься и как знания, если они – продукт [54] преобразования первичных сведений. Например, при проведении социологического исследования объем сведений в анкетах содержит знания о выборочной совокупности. Вместе с тем после корреляционного анализа указанные сведения выступают как исходные данные для математических расчетов, приводящих к получению знания о взаимозависимости изучаемых свойств социального явления.

Таким образом, знания – это данные более высокой организации, достигаемой преобразованием исходных данных.

Структура исследований в области искусственного интеллекта. Научные исследования по искусственному интеллекту в настоящее время ведутся в двух взаимодополняющих областях:

 в области раскрытия механизмов мышления человека с целью их последующего моделирования (фундаментальные исследования в области искусственного интеллекта);

 в области создания технических (компьютерных) систем, обладающих не меньшими, чем человек, способностями продуктивно манипулировать имеющимся объемом знаний и порождать новые знания.

К области фундаментальных научных исследований искусственного интеллекта также относятся следующие понятия.

1. «Мягкие» вычисления. «Жесткие» вычисления – это работа по алгоритмам, «мягкие» же вычисления – это вычисления, при которых могут быть и новые задачи, и случайное нахождение того, что нужно. То есть речь идет об эволюционных алгоритмах, моделировании эволюционных процессов.

2. Когнитивная графика (пифограмма). Это не иллюстративная, а познавательная графика, которая порождает решения. Например, если оператор зафиксирует на экране закономерность в развитии светового пятна, являющегося визуальным отображением вычисления, – это «снимается» далее с ЭВМ как заготовка решения, т. е. когнитивная графика является визуальным изображением математики.