Как мы увидели в уставе фонда Cloud Native, декларативное описание является неотъемлемой частью этой концепции. В случае с Kubernetes это означает, что вместо развертывания и запуска приложений (упакованных в образы контейнеров) явными командами из скриптов и терминала, предпочтительным является желаемое состояние кластера (desired state). Состояние описывает все системы, микросервисы и сетевые настройки системы, а управляющая система Kubernetes заботится о том, чтобы кластер представлял собой именно желаемое состояние. Состояние описано в файлах YAML. В главах, посвященных Kubernetes, мы узнаем все детали о нем, и научимся описывать систему декларативным способом.
Инструменты для сбора журналов и наблюдения
Развернув систему из множества микросервисов, общающихся между собой по сети, зачастую асинхронно, мы получим взрывной рост разнообразных условий, при которых система будет вести себя отлично от идеала. В отличие от монолитного приложения, журналы (logs) которого можно анализировать в относительном порядке, и не волноваться о сбоях вызовов внутри одного процесса, в распределенной, микросервисной среде каждый вызов может сорваться или внести каскадный сбой.
Вокруг концепции Cloud Native сложилась огромная, динамичная экосистема решений и продуктов, помогающих решить неизбежные проблемы распределенных асинхронных систем. Прежде всего это «сервисные сетки» (service mesh), такие как Istio и Linkerd. Смысл термина «service mesh» состоит в упорядочении и управлении сетевыми переговорами микросервисов, но слово «сеть» уже давно и прочно занято, и мы используем «сетку», чтобы уменьшить путаницу. Сервисные сетки решают многие проблемы, дают возможность наблюдать за сетевыми вызовами, строить графы, получать задержки, и многое другое. Системы сбора метрик, такие как Prometheus, позволяют интегрировать метрики вашей системы в единые центры наблюдения (к примеру, на основе Grafana). Управление журналами, например Fluentd, справляется со сбором и упорядочением десятков разнообразных журналов, полученных от микросервисов. Мы еще раз вспомним эти инструменты, когда будем рассматривать микросервисы в следующей главе.
Разработка на практике – 12 факторов облачного приложения
Теория и концепция Cloud Native, то есть приложений, созданных для облака, пока выглядит стройно и логично, и остальную часть книги мы посвятим практическому применению ее основных частей. Однако всегда интересно узнать «выжимку» опыта компаний, команд и программистов, которые уже попробовали разработку таких приложений, и увидели всю подноготную проблем, с которыми придется столкнуться – как мы знаем, в программировании многие неприятности скрываются именно в мелких деталях.
Команда облачного сервиса Heroku, популярного выбора для небольших команд и микросервисных систем, собрала свои наблюдения в каталог из 12 факторов (12 factor app), наличие которых в дизайне и реализации системы резко повышает его шансы на успешную работу в облаке и простую поддержку готовой системы. Отсутствие этих факторов, или, что хуже, выбор противоположных решений, может впоследствии усложнить разработку и развертывание облачного приложения. Давайте посмотрим на эти факторы, и увидим, как они соотносятся с положениями концепции Cloud Native.
1 – Единая база кода
Весь код приложения, или микросервиса должен находиться в своем отдельном репозитории (GitHub или что-то еще). Использовать один репозиторий для нескольких сервисов не рекомендуется из-за возрастающей сложности сборки и связанности между компонентами системы. В главе про микросервисы мы подробнее узнаем, почему это хорошая мысль.