Хотя создание и поддержание индексов требует колоссальных вычислительных ресурсов, эта инвестиция окупается тем, что экономит время миллионов людей ежедневно. Ведь без качественного индекса невозможен и качественный поиск.

Семантическое индексирование: поиск от примитивных алгоритмов к искусственному интеллекту

Технологии, используемые для поиска в интернете, сильно изменились за последние 20 лет, что облегчило поиск контента, который нужен потребителям. Например, семантический поиск изменил правила игры в интернете. Эта технология процветала последние 15 лет и помогла создать новую систему, которая произведет революцию в мире веб-поиска: семантическое индексирование.

Эволюция поиска в интернете

Интернет-серфинг не всегда был таким же простым как сегодня. Вначале поисковые системы использовали технику, называемую «лексическим поиском». В этой системе использовались механизмы, которые искали буквальные совпадения слов запроса, не понимая сам запрос. Например, если кто-то введет в поиск «кошка боится огурца видео», лексический поиск покажет результаты по словам «кот», «боится», «огурец» и «видео». Эта система может привести к поиску конкретного видео, но гораздо более вероятно, что пользователю придется иметь дело с отдельными статьями, изображениями или видеороликами о кошках и огурцах.

Начиная с 2010-х годов лексический поиск был отодвинут в сторону, уступив место семантическому поиску, который описывается как «поиск со смыслом». Семантический поиск добавляет контекст запроса, поэтому найти видео с котами, которые боятся огурцов, становится намного проще, поскольку поисковая система теперь точно понимает, что спрашивает пользователь.

Семантическое индексирование использует искусственный интеллект и машинное обучение для поиска медиафайлов в интернете, даже если запрос не структурирован. Это означает, что кто-то может ввести «кошка испуганный огурец» и получить те же результаты, как и при более структурированном запросе в семантической поисковой системе.

Преимущества семантического индексирования

Используя эту технологию, медиафайлы можно найти даже в том случае, если в запросе используются соответствующие синонимы и описания. Например, можно выполнить поиск «кошачьи боятся овощей» и при этом получить искомые видео. Все это достигается благодаря системам искусственного интеллекта, используемым для этих поисков.

• Инфраструктура и технологии: компании, такие как OpenAI и база данных Elasticsearch, предоставляют инфраструктуру, делающую это возможным. Их программы изучают не только то, какие темы являются наиболее релевантными для поиска, но и то, как все слова взаимодействуют друг с другом, что позволяет понимать контекст предложения.

• Многоязычный контекст: эти системы могут работать и в многоязычном контексте, что делает их еще более универсальными и мощными.

Поисковые системы в настоящее время участвуют в гонке ИИ, добавляя новые инновационные технологии и системы для улучшения качества поиска в интернете. Большинство из них, скорее всего, перейдут на систему семантического индексирования благодаря ее гибкости, изобретательности и способности совершенствоваться с течением времени. Семантическое индексирование обещает сделать поиск в интернете еще более точным и удобным, предоставляя пользователям доступ к нужному контенту быстрее и проще.

1.3. Что видят поисковые системы

В мире веб-разработки и SEO ключевым фактором успешности является понимание того, как поисковые системы взаимодействуют со структурой сайтов. Каждый элемент, каждые метаданные, каждый текстовый блок – все это может быть прочитано и проанализировано поисковыми роботами. Однако не все на вашем сайте доступно для индексации и интерпретации поисковыми системами. В настоящее время технологии искусственного интеллекта активно применяются для более глубокого понимания контента сайта поисковыми системами, что открывает новые возможности для оптимизации и повышения видимости в поисковых результатах.