Объяснение термодинамики Дмитрий Коротков
© Дмитрий Коротков, 2022
ISBN 978-5-0055-8765-7
Создано в интеллектуальной издательской системе Ridero
Предисловие. Методическое
Термодинамика в настоящее время излагается как феноменологическая теория, стоящая как-бы отдельно и независимо от других разделов физики. «Начала» термодинамики никак не используют понятия о механической системе, которым обучают студентов в курсе механики, до термодинамики. Потом, при изложении статистической и молекулярной физики показывается связь между термодинамикой и механикой, но в недостаточно общем виде. Исторически термодинамика так создавалась, её основные положения были разработаны до того ка было доказано существование атомов. Однако такой порядок изложения не позволяет достигнуть максимального понимания предмета и фактически копирует из поколения в поколение студентов поверхностный уровень понимания, который только и может дать феноменологическая теория. Для максимального понимания термодинамики необходимо изменить структуру её изложения, выстроив её на основе других аксиом, которые сильнее связывают термодинамику с механикой и другими разделами современной науки. Это можно сделать, если в основу термодинамики положить понятия о рассеивающей системе и неупорядоченном взаимодействии. Эти понятия интуитивно понятны из повседневного опыта. Такое изложение термодинамики представлено в данной книге.
Изложение строится по аналогии с классической механикой, в начале которой говорится: «существуют инерциальные системы отсчёта», затем даётся их определение и формулируются все законы механики – для них и только для них. Аналогично для термодинамики вначале говорится: «существуют рассеивающие механические системы», затем даётся их определение, а всё остальное в термодинамике (в. т. ч. её «начала») выводится для этих и только для этих систем.
В традиционном изложении термодинамики есть похожее базовое понятие о стремлении любой «макроскопической» системы к состоянию равновесия. Этот процесс называют «релаксация». Однажды это понятие было сформулировано как «минус первое начало термодинамики» (в связи с тем, что номер «0» до этого уже был занят под одно из «новых начал»). Но это не эквивалентно изложению термодинамики, представленному в данной книге. Традиционно в термодинамике «система» и «равновесное состояние» понимаются предельно обобщённо, надеясь таким образом построить термодинамику, как «теорию всего». К сожалению, здесь «термодинамическая мысль» совершила типовую логическую ошибку, называемую: «попытка доказать слишком много». Вообще, чем более обобщённую теорию мы пытаемся построить, тем меньше конкретики мы можем сказать о той реальности, для которой мы пытаемся строить теорию. В пределе для «теории всего», можно в основном утверждать только то, что это «всё» существует.
Механизмы «релаксации» в реальных физических системах – явление исключительной важности для нашей жизни. Поэтому их полезно включить в теорию, и в данной книге это сделано. Сейчас это легко можно сделать, в отличие от 19-го века, когда создавалась термодинамика и ещё не было доказано существование атомов.
Нельзя сказать, что изложение термодинамики, представленное в данной книге, – это нечто абсолютно новое. Похожее понимание термодинамики, насколько я могу судить, имеется у многих физиков. В классическом учебнике [8] формулируются ограничения применимости термодинамики для реальных систем. В книгах к.ф-м. н. С.Д. Хайтуна, описаны проблемы с пониманием в термодинамике темы «второго начала» и энтропии (см., например, [10]), перекликающиеся с изложенным в данной книге. Ещё пример: в журнале для школьников «Квант» №3 за 2002 г. была опубликована статья С. Варламова: «Тепловые свойства воды», объясняющая теплоёмкость на основе степеней свободы, что полностью согласуется с подходом данной книги. Однако в университетских курсах термодинамики по-прежнему вначале пытаются построить «теорию всего» и «доказать слишком много», а потом делают из этого «всего» различные исключения. Об этом свидетельствует и традиционный язык изложения термодинамики, в котором часто употребляется выражение «макроскопическая система», хотя уже давно известны макроскопические системы, даже из многих частиц, которые не подчиняются законам термодинамики, например, плазма [8].
При написании данной книги, кроме постановки идеи рассеяния во главу угла, были обнаружены и другие интересные положения термодинамики, которые следовало бы изложить не так, как это делается традиционно. При этом основные результаты термодинамики остаются в силе, но они становятся более понятными, а также становятся понятными условия их применимости к реальному миру.
Данная книга не претендует на полноту изложения термодинамики и объясняет только её основы. Специальные и прикладные разделы термодинамики можно изучать по имеющейся литературе. С учётом информации данной книги, эта литература будет гораздо более понятна.
Данную книгу рекомендую читать не торопясь, т.к. плотность информации в ней высокая и стиль изложения в основном научный. Также призываю читать книгу критически. Эта книга не имеет официального статуса учебного пособия. Мои попытки получить содержательную критику на неё у авторитетных специалистов по термодинамике мало к чему привели. Было несколько частных бесед, с отзывами в целом неотрицательными. Я далее не вижу смысла тратить на это время и публикую эту книгу в надежде на широкий охват заинтересованных читателей. Отзывы и критику прошу направлять по адресу электронной почты kdmpubpro на yandex.ru.
После публикации в текст внесены правки от 20.05.2022 г., состоящие в улучшении ясности изложения некоторых мест и исправлении опечаток.
1. Основные понятия
Термодинамика описывает общие законы поведения механических систем с очень большим количеством степеней свободы. Степени свободы – это независимые друг от друга элементарные движения системы. Количество степеней свободы соответствует количеству независимых переменных (координат), полностью описывающих положение системы. Обычно термодинамика рассматривает систему из множества частиц, каждая с некоторым количеством своих степеней свободы. При этом термодинамика отказывается от описания движения каждой частицы системы или каждой степени свободы в отдельности.
В традиционном изложении термодинамики также используется термин «степени свободы», но там это переменные, требуемые для обобщённого описания системы: температура, давление и т. п. В текущем изложении термодинамики степени свободы понимаются в классическом общемеханическом смысле. Например, это координаты положения и ориентации всех частиц системы.
Термодинамика рассматривает не любые системы со многими степенями свободы, а только такие, которые обладают следующим свойством: при отсутствии внешних воздействий в них с течением времени энергия распределяется по всем степеням свободы. Такую систему будем кратко называть – рассеивающая система. Рассеяние утверждается для средних по времени энергий в степенях свободы, при этом мгновенные значения энергий могут существенно изменяться во времени, колеблясь вокруг своих средних значений. Значения энергий в степенях свободы в каждый момент времени образуют некоторое статистическое распределение, которое может быть разным для разных видов систем. Эти распределения изучает статистическая физика, термодинамика их не рассматривает. Вид этих статистических распределений не влияет на законы термодинамики.
В теории устойчивости есть понятие «диссипативная система», но там «диссипация» энергии рассматривается только как её потеря, а механизмы диссипации не рассматриваются. Поэтому для исключения путаницы понятий, этот термин использовать не будем.
Для рассеивающих систем без ущерба для общности теории можно принять следующее условие, упрощающее рассуждения: энергия по степеням свободы рассеивается равномерно. Для некоторых систем не обнаруживается равномерного рассеяния энергии по их «кинематическим» степеням свободы. Доля распределяемой энергии будет зависеть от характера движения в данной степени свободы. Но для таких систем можно формально принять некоторое другое количество степеней свободы, назвав их, например, «эффективные», по которым энергия будет считаться распределяемой равномерно. Это не повлияет на построение термодинамики, т.к. в ней принципиально не рассматриваются движения по отдельным степеням свободы.
Пример: степени свободы молекул. Для двухатомной молекулы можно представить шесть «кинематических» степеней свободы: три поступательные (для общего движения молекулы в пространстве), две вращательные и одну колебательную. Последняя имеет в среднем двойную энергию относительно остальных степеней свободы: это кинетическая и потенциальная составляющие энергии. Для формального равенства распределения энергии по степеням свободы колебательную степень свободы нужно считать за две эффективных. Поэтому общее число эффективных степеней свободы двухатомной молекулы – семь. Из-за квантовых эффектов колебательная степень свободы возбуждается только при достаточно высоких температурах. В привычных нам температурных условиях двухатомные молекулы ведут себя как пяти-степенные системы.