В дальнейшем, при упоминании степеней свободы слово «эффективная», как правило, будем опускать.

Равновесное состояние рассеивающей системы – это состояние равенства средней по времени энергии у всех её (эффективных) степеней свободы. Это состояние ещё называют термодинамическое равновесие.

В состоянии термодинамического равновесия для энергии примем эргодическую гипотезу: «среднее по времени равно среднему по ансамблю». По времени – для некоторой одной степени свободы, а «ансамбль» – это все степени свободы. Из определения видно, что в неравновесном состоянии эргодическая гипотеза может не выполняться.

В общем определении термодинамического равновесия нет необходимости задавать равномерное распределение частиц по пространству. Положения в пространстве можно включить в понятие «степени свободы» (это будет показано далее в данной книге). Вообще необходимость рассмотрения пространственного расположения частиц не обязательна и зависит от решаемой задачи.

Многие реальные системы частиц можно считать рассеивающими системами: не только газы, но в ряде задач также и жидкости, и твёрдые тела. Для систем частиц с сильными связями, степени свободы могут не вполне соответствовать движениям реальных частиц системы. В этом случае может использоваться понятие «квазичастицы». Их движения соответствует движениям связанных групп реальных частиц.

Строгие необходимые и достаточные условия для того, чтобы систему можно было считать рассеивающей, сформулировать достаточно сложно. Можно назвать следующие приблизительные условия:

1) Обмен энергией между степенями свободы должен происходить неупорядоченным, непредсказуемым образом. Иначе законы термодинамики могут не работать, да и систему с упорядоченными движениями можно описать более точной теорией, чем термодинамика.

2) Число степеней свободы системы не должно существенно уменьшаться с течением времени. Для пояснения рассмотрим предельный случай: пусть по каким-то причинам рассеивающая система, например, газ сконденсируется до твёрдого тела и охладится с уменьшением числа степеней свободы до небольшого числа. Понятно, что такую систему уже сложно назвать рассеивающей. Уменьшение степеней свободы существенно не во всех случаях, но в целом при рассмотрении процессов с уменьшением числа степеней свободы необходимо обращать внимание на сохранение системой рассеивающих свойств.

3) Если в системе существуют силовые поля, действующие на значительные доли от всех частиц системы, например, гравитация, то движение частиц под действием этих полей может становиться полностью или частично связанным, коррелированным. Это эквивалентно уменьшению числа степеней свободы системы, что может привести к потере системой рассеивающих свойств по условию (2).

Таким образом, для объяснения поведения рассеивающих систем мы использовали понятие о случайности. При этом возникают вопросы о логической связи термодинамики с классической механикой, которые обсуждались ещё в 19 веке при создании молекулярной физики: как частицы, движущиеся в пространстве по законам классической механики, которые (1) допускают обращение времени и (2) детерминистские, могут создавать системы, не допускающие обращения времени (рассеивание энергии запрещает возможность обратного) и содержащие элементы случайности?

В настоящее время это можно объяснить следующим образом:

1) На практике обращений времени не наблюдается, а рассеивающие системы есть. Поэтому, скорее всего, классическая механика слишком многое разрешает течению времени.

2) Если мы считаем, что в принципе можем что-то знать, то не обязательно мы действительно получим это знание. Однако статистическое описание всегда возможно, независимо от того, можем ли мы знать точное описание.