Рис. 19. Схема вегетативной репликации ДНК (по: Коротяев А., Бабичев С., 1998)
Помимо вегетативного у бактерий имеются конъюгативный и репаративный типы репликации ДНК. Конъюгативная репликация происходит при конъюгативном способе обмена генетическим материалом и контролируется плазмидными генами (tra-оперон). При этом осуществляется достройка второй, комплементарной нити ДНК, передаваемой от донора реципиенту. Репаративная репликация служит механизмом устранения из ДНК структурных повреждений и происходит на заключительном этапе генетической рекомбинации. Она контролируется хромосомными и плазмидными генами.
Информация, содержащаяся в геноме бактерий, расшифровывается, материализуется и реализуется путем биосинтеза белка. Универсальности генетического кода соответствует универсальность его расшифровки и реализации (экспрессии). Однако биосинтез белка у бактерий имеет некоторые особенности на этапе транскрипции. Гены бактерий, в отличие от генов эукариот и вирусов, не содержат интронов, поэтому у бактерий отсутствует сплайсинг при синтезе мРНК. Сплайсинг РНК – процесс, при котором происходит вырезание интронов (некодирующих последовательностей у генов, имеющих интрон-экзонную структуру) из первичных РНК-транскриптов и сшивание экзонов, в результате чего образуется и затем транслируется зрелая мРНК. Отсутствие сплайсинга РНК у бактерий является естественным генетическим барьером в реализации генетической информации эукариот у бактерий (прокариот). Преодоление этого барьера привело к созданию генной инженерии на бактериальных объектах.
Генетическая информация реализуется микроорганизмами весьма «экономно», в соответствии с конкретными условиями их существования. «Работают» (экспресcируются) только гены, необходимые для обеспечения жизнеспособности клетки в данных условиях. Саморегуляция системы генетической информации обеспечивается наличием в ней помимо структурных генов, кодирующих белки и другие макромолекулы, особых последовательностей нуклеотидов (акцепторных или регуляторных генов), не имеющих кодирующих функций, но управляющих работой структурных генов. Как уже упоминалось, совокупность расположенных рядом структурных и регуляторных генов составляет оперон-единицу генетической регуляции. Классической моделью оперона является лактозный оперон. Рассмотрим на примере лактозного оперона кишечной палочки его устройство и способ регуляции активности структурных генов, кодирующих синтез ферментов, участвующих в усвоении лактозы.
Начинается оперон (рис. 20) с «участка прикрепления белка-активатора» – продукта вышестоящего регулона (Сар-белка, без которого РНК-полимераза не может связаться с опероном и начать транскрипцию). Далее на хромосоме расположен промотор – участок распознавания РНК-полимеразой и прикрепления ее, затем следует оператор – участок, с которым связывается особый тормозящий транскрипцию белок-регулятор. После оператора расположены последовательно структурные гены z, y, a, кодирующие соответственно синтез трех ферментов, участвующих в усвоении лактозы: β-галактозидазы, β-галактозидпермеазы и тиогалактозидтрансацетилазы. Заканчивается lac-оперон терминатором — небольшим участком ДНК, служащим стоп-сигналом, прекращающим продвижение РНК-полимеразы и транскрипцию оперона. Вне lac-оперона, на другом месте хромосомы находится особый ген-регулятор, кодирующий непрерывный синтез белка-регулятора.
Рис. 20. Схема функционирования lac-оперона (по: Коротяев А., Бабичев С., 1998)