Теперь мы видим метафизическое обоснование тех элементарных утверждений о числе, с которых обычно начинаются арифметические трактаты. Я беру следующее из «Универсальной арифметики» Ньютона, «In usum Juventutis Academicoe»:

«Под числом мы понимаем не столько множество единств, сколько абстрактную пропорцию любого количества чего бы то ни было к другому количеству того же рода, которое принимается за единство. Число бывает трех видов: целое, дробное и избыточное. Целое число – это то, мерой которого является единица. Дробь – это число, мерой которого является подмногочисленная часть единства. Дробь – это то, что не может быть измерено единицей».8

Здесь можно задать вопрос, как, отбросив дроби, можно представить себе какое-либо число, не измеряемое единицей. Ответ, по-видимому, заключается в том, что Ньютон имеет здесь в виду числа, которые названы только общими терминами, то есть названы как воображаемые результаты, не осуществимые в действительности определенных процессов вычисления, которые, если предположить (jper impossibile), что они могут быть доведены до конца, дали бы определенные числа, соизмеримые с единством, как их результат. Теперь, поскольку алгебра – это та ветвь всей науки вычислений, которая основана на обобщении арифметических чисел и процессов, – каждое обобщение выражается некоторым символом, позволяющим использовать его в вычислениях, как если бы это было конкретное число или конкретный вид процесса, – а Ньютон рассматривает здесь элементы арифметики и алгебры в сочетании, мы должны предположить, что он имеет в виду главным образом алгебру, когда называет сурды третьим из трех высших видов, на которые делится все число.

Корни возникают в алгебре в процессе извлечения так называемых корней из чисел, которые таким образом ipso facto рассматриваются как силы; и корни, и силы используются в алгебре как общие термины для обозначения предполагаемых результатов определенных процессов вычислений. Под силами числа понимаются числовые результаты, которые получаются при умножении этого числа на само себя любое заданное число раз, например, 2 x 2 = 4; 4 x 2 = 8; 8 x 2 = 16 и так далее; где 4 – это вторая сила (или квадрат) 2, записываемая как 2>2; 8 – это третья сила (или куб), записываемая как 2>3; 16 – это четвертая сила, записываемая как 2>4. Обратный этому процесс – извлечение корня. Он состоит в том, чтобы найти, какое число, умноженное определенное количество раз на само себя, даст то число, квадратный, кубический, четвертый, пятый и т. д. корень которого требуется. Но здесь возникает трудность, обусловленная, как обычно бывает в таких случаях, предположением, а именно предположением, что каждое данное число – это сила. Ибо, хотя нам нетрудно возвести любое данное число в любую заданную силу путем умножения, из этого отнюдь не следует, что мы можем довести до конца обратный процесс извлечения корня из любого данного числа. Это обязательно следует только в случае тех чисел, которые ранее были достигнуты прямым процессом. Мысль о том, что все данные числа являются производными от корней, а также просто числами, возникла в результате обобщения успешных примеров извлечения корней и, следовательно, ожидания успеха в тех случаях, когда в действительности можно получить лишь воображаемые результаты. То, что эти два процесса обратны друг другу по виду, не означает, что они одинаково применимы к любому данному числу.

Поэтому во всех случаях извлечения корня, когда данное число, корень из которого требуется извлечь, не является заведомо целым, перед нами не простой процесс вычисления, а проблема, проблема, заключающаяся в том, чтобы найти, имеет ли данное число корень или нет. Из того, что в задаче предлагается найти корень из данного числа, не следует, что искомый корень может быть найден. Например, «число точных квадратов бесконечно; но в любых заданных пределах существует гораздо больше чисел, не имеющих точных квадратных корней, чем точных квадратов»