Следовательно, время увлечения только чистой математикой должно безвозвратно уйти в прошлое. Она должна развиваться на равноправной и взаимообогощающейся основе совместно с философией, физикой и экономикой. Поэтому выбору математического аппарата, хотим мы этого или не хотим, всегда соответствует философское обоснование, где Философия выступает как связующий элемент между Природой и Математикой. Естественно, что формы этого обоснования могут быть разные – от простенькой методики проведения эксперимента до анализа методологических основ науки вообще и конкретного исследования в частности.

В данном случае имеет место последнее, поэтому оказались необходимыми такие несколько необычные по форме предварительные суждения философского плана. На основании таких философских обобщений реальной действительности можно констатировать, что математические объекты могут иметь множественную, комплексную, функциональную, (векторную) и параметрическую (тензорную) формы.

Они отражают качественно различную природу соответственно энергетической, механической, материальной и биологической сущности объектов реального мира (Природы и Общества). По аналогии со своей сущностью (реальным миром) эти формы в зависимости от обстоятельств могут рассматриваться и применяться либо изолированно друг от друга, либо в любом сочетании друг с другом (взаимодействии с одним, двумя или тремя другими).

Однако математические объекты разной формы взаимодействовать могут лишь в случае сопоставимости их единиц измерения. Именно в этом заключается задача третьего этапа системного анализа. Как же сделать сопоставимыми энергию, механические объекты, материальные предметы и интеллект, а значит, множества, функции, векторы и числовые параметры?

Анализируя причины парадоксов, обнаруживаемых в тех или иных теориях, можно прийти к выводу, что многие из них возникают в результате стремления ученых создать универсальный математический аппарат для математических объектов разной природы при слишком ограниченном наборе применяемых средств.

Поэтому не случайно этой проблемой занимаются многие исследователи, о чем убедительно свидетельствует библиография работ в этой области, приведенная в обстоятельном обзоре А. И. Орлова. Тем не менее применение математического аппарата "объектов нечисловой природы", а именно такой термин применяется для элементов пространств, не являющихся линейными, ограничено статистикой, а этого в нашем случае явно недостаточно. Внешне задача выражения математических объектов разной природы в числовом виде кажется достаточно простой.

На самом же деле это далеко не так. Главная трудность состоит в том, что требуется не любое число, а только такое, которое было бы, как говорят, математики, инвариантно по отношению как к линейным пространствам, так и к любому нелинейному. Попросту говоря, такое число не должно реагировать ни на возведение в степень, ни на извлечение корня и, в идеале, ни на любую другую операцию над числами, результатом которой может быть это инвариантное число. Эта проблема имеет давнюю историю.

Еще в середине 19-го века Д. Буль разработал математический аппарат символической логики – Булевой алгебры, в основе которой были определены две операции по отношению к единице. Этот аппарат постоянно совершенствовался и нашел широкое применение в топологии, теории вероятности, функциональном анализе и в, других областях математики. По сути, этот аппарат наиболее близок к тому идеалу, о котором шла речь выше.

Если говорить об операциях, то их в Булевой алгебре фактически три: помимо сложения и умножения применяется отрицание (дополнение). Кроме элемента X, единицы и нуля алгебра содержит элемент Сх в качестве дополнения к X. Естественно, имеется соответствующий набор аксиом, которым должны удовлетворять операции. Все это позволяет достичь весьма высокой степени абстрагирования, но тем не менее полной универсализации обеспечить не удалось. К тому же оказался достаточно сложным "выход" из Булевой алгебры в обычную, да и "вход" тоже.