Теория групп в этом отношении более универсальна, т. к. имеет в своем распоряжении, кроме единичного, обратный элемент, позволяющий любое выражение приводить к единице. Однако несмотря на свою универсальность и существенные успехи в прикладных науках эту теорию в ее обычном виде вряд ли можно будет использовать в данном случае по прямому назначению. Видимо потребуются некоторые усовершенствования формального характера.
Дело в том, что в прикладных науках так называемых непрестижных отраслей, в том числе в экономике, никто, пожалуй, кроме Л. В. Канторовича, всерьёз математику не применял. Задачи вычислительно- оптимизационного характера являются вторичными, поэтому они не в счет, ибо математика в них выполняет роль счетного инструмента, которому безразлично, что считать. Методологической нагрузки она не несёт практически никакой. И в этом смысле экономике не повезло еще со времён Маркса, который, судя по всему, только к концу своей научной карьеры осознал, что без солидной математической основы ни о какой политэкономии социализма, а тем более коммунизма, не может быть речи.
В частности, научный уровень "Математических рукописей", время проявленного интереса к разным областям математики и попытки использовать их при написании "Капитала", очевидно, могут служить; основанием для вывода о том, что затруднения с математикой у Маркса возникали не потому, что он не смог разобраться в существовавшем тогда математическом аппарате (такой проблемы не могло существовать для человека, изучавшего иностранные языки только для того, чтобы читать интересующие его источники в оригинале).
Почти наверняка можно утверждать, что эти затруднения носили методологический характер, причем не столько со стороны математики, сколько со стороны политэкономии. Эта математическая задача в ряду с предыдущими выделяется своими негативными последствиями.
Не будет преувеличением сказать, что ее решение, а точнее – нерешение, является причиной того, что до сих пор не разрешено главное противоречие социализма – распределение по труду. Для выяснения сути этого противоречия придется привлекать методы не только из философии, но и из физики, и даже из биологии.
Итак, суть этой задачи сводится к конструированию такого механизма, который позволял бы легко переходить, например, от функционального математического аппарата к множественному, комплексному или параметрическому, т. е. от любого к любому. Это жизненно необходимо, в принципе, для описания любой реальной системы, но особенно – экономической, где невозможно сбалансировать хозяйственный механизм, не имея соответствующих эквивалентов, подобных механическому эквиваленту теплоты в физике.
Почему речь идет о конструировании механизма, а допустим, не о разработке или создании? Дело в том, что при небольшой смысловой разнице в терминах все-таки есть особенность, которую любят подчеркивать математики: они ничего не должны изобретать, а должны конструировать, ибо изобретенный элемент может нарушить логическую строгость доказательства. Против этого нельзя возражать, но опять-таки, если это требование не распространить на исходные "кирпичики", из которых "строится" логика доказательств. Эти универсальные "кирпичики" можно и должно изобретать, т. е. получать путем максимально возможного абстрагирования используемых математических средств и понятий.
Математики в таких случаях говорят, что необходим набор неопределимых (исходных, первичных) понятий. Философы тем более не сомневаются в необходимости таких абсолютных абстракций. В этом вопросе нет никаких разногласий. Но они неизбежно возникают, когда требуется уточнить этот набор как по форме, так и по содержанию.