а. В каком диапазоне должен быть параметр
б. Используя тот факт, что
в. Для
г. Алгебраическим путём найдите точку равновесия
д. Пусть
е. Используйте часть (д), чтобы найти формулу для
ж. Можно ли модифицировать модель так, чтобы описывалась диффузия между двумя отсеками разных размеров?
Проектные работы:
1. Предположим, что численность выпускников математических факультетов, трудоустраивающихся по специальности, имеет динамику, хорошо моделируемую дискретным разностным уравнением
Конечно, динамика этой численности всегда будет зависеть от значения
а.
б.
Рекомендации
Чтобы почувствовать модели, исследуйте тему с помощью onepop.m из задачи 1.2.4 для множества разумных вариантов параметров. Опишите любое необычное поведение модели и попытайтесь его объяснить.
Рассчитайте аналитически равновесия (которые могут быть выражены через
Объясните равновесие и стабильность с точки зрения паутинных диаграмм. Какое влияние оказывает вычитание
Постарайтесь найти наибольшее
Если бы вы отвечали за управление моделируемой организации, было бы вам комфортно, если бы стабильное равновесие находилось близко к нестабильному?
Существуют ли значения
Если без проведения сокращений численность сотрудников не имеет устойчивого равновесия, то может ли принудительное сокращение привести к стабильности? Имеет ли это экономический смысл?
Используйте программу longterm.m для создания диаграмм, показывающих изменения моделируемой численности в долгосрочной перспективе по мере изменения параметров модели.
% longterm.m
fun = @(x,r) x + r*x*(1-x);
x0 = .99; a0 = 0; a1 = 3; N = 777; preL = 200; L = 100;
mat = bifur(fun,x0,a0,a1,N,preL,L);
function mat = bifur(fun,x0,a0,a1,N,preL,L,p_siz)
% –
% Функция bifur: строит однопараметрическую диаграмму бифуркаций
% Вход: fun = некоторая функция @(x,para)
% x0 = стартовое значение для x
% a0 = начальное значение параметра a
% a1 = конечное значение параметра a
% N = количество интервалов для параметра 'a' на отрезке [a0;a1]
% preL = количество предварительно пропускаемых итераций для