– Я никогда тебя не любила, впрочем, как и ты…

– Я любил…

– Нет! Мы поженились потому, что ты посчитал меня выгодной партией. Я презираю браки по расчету. И никогда больше не выйду замуж за деньги и не дам мужчине найти только деньги во мне. Секс – это не отношения. Это просто секс и ничего больше.

– Так мы не разводимся?

– Нет. То есть, разводимся, конечно, но чуть позже. Когда я найду того, кто полюбит меня по-настоящему.

– Да ты…

– В твоем понимании я собираюсь поступить с тобой как стерва и лишь потому, что не дура, и не намерена упускать шанс еще побыть некоторое время счастливой. С тобой я ни дня не была счастлива, Дамокльз. Ты думаешь только о себе: приходим в магазин и покупаем только то, что ты любишь, мои желания не учитываются. Я не умею так жить.

– Ты опять о браслете и машине?

– Да не только об этом! Даже когда мы покупаем еду, выбираешь ты. Аргумент меня просто настораживает: «Я это не ем. Давай покупать только то, что все едят. Но под словом «все» ты подразумеваешь одного себя. Ты махровый эгоист, дорогой, поскольку эгоисты – не те, кто хочет жить, как ему нравится – ты хочешь, чтобы весь мир поступал так и делал то, что решил ты.

– Да ну тебя!

– Действительно, Дамокльз! Да ну меня совсем!

– Ты не зацепишь этого миллионера.

– Может, ты и прав. Но я все равно попытаю счастья.

– Дело в богатстве, да? Он сможет купить тебе целую дюжину браслетов «Пандора?»

– Он нравится мне. Но ты вряд ли поймешь это, ведь чувство привязанности к кому-то, кроме себя, тебе неведомо.

Не дожидаясь ответного оскорбления, она ушла на работу.

В университете Афродита всегда находила способы расслабляться и некоторое время быть счастливой. Чуточку довольной жизнью. У нее и здесь было много поклонников, но с некоторых пор все они поумерили свой пыл, будто поняли, что место отныне занято. Но кем? Афродита все время чувствовала, что за ней наблюдают, и от этого ощущения становилось жутко.

– Тема нашей сегодняшней лекции: «Пределы функций». На практическом занятии мы разберем примеры решений задач, а пока начнем…

Теория пределов – это один из разделов математического анализа. Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойней другой.

Итак, что же такое предел?

Пример:



Любой предел состоит из трех частей:

1) Всем известного значка предела.

2) Записи под значком предела, в данном случае. Запись читается «икс стремится к единице». Чаще всего – именно, хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().

3) Функции под знаком предела, в данном случае.







Сама запись читается так: «предел функции при икс стремящемся к единице».




Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?

Понятие предела – это понятие, если так можно сказать, динамическое. Построим последовательность: сначала, затем,, …,, ….

То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают.






Решаем вышерассмотренный пример. Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела: