Положительные стороны применения технологии OFDM [49, 116].

– Высокая эффективность использования радиочастотного спектра, объясняемая почти прямоугольной формой огибающей спектра при большом количестве поднесущих частот.

– Простая аппаратная реализация: базовые операции реализуются методами цифровой обработки.

– Хорошее противостояние межсимвольным помехам (ISI – intersymbol interference) и интерференции между поднесущими (ICI – intercarrier interference). Как следствие – лояльность к многолучевому распространению.

– Возможность применения различных схем модуляции для каждой поднесущей, что позволяет адаптивно варьировать помехоустойчивость и скорость передачи информации.

– Отрицательные стороны использования технологии OFDM [49, 116].

– Необходима высокая синхронизация частоты и времени.

– Чувствительность к эффекту Доплера, ограничивающая применение OFDM в мобильных системах.

– Неидеальность современных приёмников и передатчиков вызывает фазовый шум, что ограничивает производительность системы.

– Защитный интервал, используемый в OFDM для борьбы с многолучевым распространением, снижает спектральную эффективность сигнала.

– Относительно большой пик фактор сигнала (с которым борются ограничением амплитуды [116]).


Из комплексного выражения (1.2) необходимо получить физический сигнал, который просто можно подать на антенну и получить на приемной стороне. Если нет прямого синтеза частоты, то есть если I и Q компоненты сигнала на низких частотах относительно несущей частоты, то необходимо так же перенести сигнал в высокочастотную область. Существуют различные схемы переноса комплексного сигнала на радиочастоту. Может применяться простое суммирование с двух смесителей (С), на входы которых поступают фильтрованные (ФНЧ) I- и Q- компоненты, умноженные на несущую гармонику, фаза которой для синфазной составляющей соответствует нулевой фазе косинусоиды, а для квадратурной – нулевой фазе синусоиды.

В таком случае недостатком является вторая боковая полоса (если не закладывать информацию в зеркальные или отрицательные частоты). Этого недостатка лишена схема Уивера, однако появляются минусы: невозможность напрямую сформировать промежуточный квадратурный сигнал сразу на нулевой частоте или на другой промежуточной частоте, относительно большое количество вычислений по процедуре ОБПФ и БПФ, необходимость применять высокочастотные устройства для получения и обработки первичного OFDM-сигнала.

Разработка модели канала связи и прием сигнала, прошедшего многолучевой канал

В канале связи OFDM-сигнал подвергается не только воздействию аддитивного белого Гауссова шума, но и эффекту многолучевости. В зависимости от характера распределения волн законы огибающей сигнала могут задаваться распределениями Рэлея, Накагами и другими. Уровень замираний сигнала может быть незначительным, а может достигать 40 дБ и более. Импульсная характеристика многолучевой среды распространения описывается формулой:


(1.3)


где h>m – передаточные коэффициенты лучей многолучевого сигнала, φ>m – их фазы, k>m – задержки лучей в выборках, δ (n- k>m) – функция Кронекера, m – номер луча, L – суммарное число лучей. В случае домашней связи, например, по сети WiFi, в первом приближении функцию h>m можно описать распределением Рэлея, а φ>m – равновероятным распределением. Стоит отметить, что в случае, когда нет прямого луча, формулой Рэлея описывается именно огибающая радиосигнала, то есть изменение коэффициента передачи суммы всех лучей описано по данному закону [54].

В тропосферном канале аналогией непостоянства скорости звука является профиль коэффициента преломления в среде распространения. Причиной неоднородностей в тропосфере служат турбулентные передвижения воздуха за счет нагрева у земной поверхности и охлаждения на высоте. Эти турбулентности имеют зависимость от метеоусловий и от других природных относительно медленных факторов, что проявляется в медленных замираниях, описываемых нормально-логарифмическим законом [18]. Так же вклад вносят профили давления и влажности тропосферы, так как из-за разницы давлений возникает неоднородность, например, в составе воздуха, а за счет влажности изменяется коэффициент преломления в среде. Уровень замираний в тропосферной связи, то есть отношение максимальной энергии сигнала к минимальной, достигает величины 40 дБ [18].