sin α называется моментом импульса объекта. Он связан со скоростью, с которой объект вращается вокруг заданной оси. Если α = 0, скорость направлена к оси или в противоположную сторону: то есть объект будет приближаться к оси или удаляться от нее, не вращаясь вокруг нее. Момент импульса в этом случае равен нулю.

И напротив, если α = 90°, скорость перпендикулярна направлению оси, что означает, что объект «изгибается»: момент импульса в данном случае максимальный и выражается просто mνl. В частности, это происходит, когда объект описывает круг вокруг оси.


Рис. 6.6 – Момент импульса

Если α = 0, объект удаляется от оси, не вращаясь вокруг нее: момент импульса равен нулю. Если α = 90°, движение, напротив, представляет вращение вокруг оси: момент импульса максимальный.


Последствия

Как и момент силы, понятие момента импульса позволяет понять некоторые очень важные явления.

Представим фигуриста на льду: он «псевдоизолирован», то есть внешние силы компенсируют друг друга (с одной стороны вес, с другой – реакция опоры). Существуют также внутренние электростатические силы, которые обеспечивают сцепление атомов фигуриста. Но принцип взаимодействия говорит нам о том, что эти силы противопоставлены друг другу как две против двух и приложены к одной оси: то есть внутренние силы никогда не создают момента.

В итоге общий момент сил, действующих на фигуриста, равен нулю. Между тем этот момент заставляет измениться момент импульса, а это значит, что момент импульса фигуриста остается неизменным.

Предположим, что фигурист вращается на месте, раскинув руки в стороны: поскольку его момент импульса не меняется, скорость его вращения останется постоянной, если он будет держать руки раскинутыми. Ничего удивительного: не следует забывать, что мы не учитываем трение.

Но предположим, что в какой-то момент фигурист опустит руки: расстояние l между его ладонями на оси вращения уменьшилось. Чтобы момент импульса mνl сохранился, нужно, чтобы увеличилась скорость.

В конечном счете простой факт того, что фигурист опустил руки, заставил его вращаться быстрее. Чтобы упростить пример, предположим, что некая масса (как кисть руки фигуриста) наполовину приблизилась к оси вращения: расстояние до оси сократилось вдвое. В этом случае сохранение mνl требует, чтобы скорость массы была помножена на два (➙ рис. 6.7).

Но это еще не все: поскольку масса приблизилась к оси, ее путь вокруг оси будет вдвое короче (она пройдет круг меньшего диаметра). Таким образом, не только удвоилась скорость, но и дистанция кругового движения вдвое уменьшилась. В итоге массе понадобится в четыре раза меньше времени, чтобы сделать один оборот!

Если масса совершала один оборот в секунду, теперь за секунду она совершает четыре оборота. Случай с фигуристом сложнее, потому что не вся его масса сосредоточена в руках: то есть он не будет вращаться вчетверо быстрее. Тем не менее скорость его вращения вокруг своей оси сильно возрастет: именно это мы видим, когда наблюдаем за вращением фигуристов.

На этом этапе может возникнуть вопрос: за счет чего же увеличивается скорость, если не влияет никакая равнодействующая внутренняя или внешняя сила?

На самом деле все части системы остаются неподвижными не потому, что равнодействующая сила равна нулю. Вспомните пример двух лежащих рядом шаров с положительными зарядами (➙ рис. 6.1): равнодействующая сила была равна нулю, потому что две отталкивающие электростатические силы были противопоставлены друг другу. Однако с течением времени скорость шаров увеличивалась.


Рис. 6.7 – Сохранение момента импульса