ролик про число «e». Что еще можно сказать про «e»? Ну, например, то, что оно иррациональное – то есть не может быть вычислено как частное двух целых чисел. В десятичной записи оно имеет бесконечное число знаков после запятой. Также число «e» является трансцендентным – то есть не является корнем ни одного многочлена с целыми коэффициентами. Впрочем, этот факт уже совсем не относится к делу.

Возвращаясь к логарифмированию. Различия в основаниях в подавляющем большинстве случаев никак не сказывается на результате, поскольку для логарифмов действует довольно простое правило замены основания:

log>a (b) = log>c (b) / log>c (a),

то есть для перехода от десятичного логарифма к натуральному результат надо разделить на константу – на натуральный логарифм 10:

lg (a) = ln (a) / ln (10)

Ну или в обратную сторону – от натурального к десятичному:

ln (a) = lg (a) / lg (e)

Поэтому когда речь идет о логарифмировании какой-то выборки, то основание особой роли не играет: любые результаты логарифмирования отличаются друг от друга на постоянный множитель, что не оказывает никакого влияния на характер распределения.

У логарифма есть одно чрезвычайно полезное свойство (правда, в плане обработки выборок, кажется, не применимое):

log (a * b) = log (a) + log (b)

То есть с помощью логарифмирования умножение сводится к значительно более простой операции сложения. И эта особенность логарифмов, например, дала возможность создать аналоговую вычислительную машину, хорошо знакомую «бумерам» – логарифмическую линейку10.

Ну и одно неприятное свойство логарифма: логарифм нуля не существует (а в выборках нули, увы, присутствуют).

Возвращаясь к нашим правоасимметричным выборкам. Представим, что в нашем распоряжении есть выборка11 с большой правой асимметрией (это не реальные данные, а сгенерированные для иллюстрации процедуры построения). Давайте построим по этой выборке сначала обычную гистограмму, потом – гистограмму в логарифмическом масштабе.

Для построения обычной гистограммы последовательно выполняем шаги:

– Определяем минимум, максимум и размах (Лист «Данные»).

– Задаем количество классов группировки и рассчитываем ширину класса (Лист «Данные»).

– Присваиваем каждому значению номер класса (Лист «Шаг 1 – обычный масштаб»).

– Для каждого класса рассчитываем количество данных, границы класса и его центр (Лист «Шаг 2 – обычный масштаб»).

– Строим гистограмму в «натуральном» масштабе (Лист «Шаг 3 – обычный масштаб»).

В итоге получается что-то вот такое:


Гистограмма с правой асимметрией в натуральном масштабе


Как и предупреждали, наглядность полученного графика оставляет желать лучшего.

А теперь давайте построим гистограмму в логарифмическом масштабе. Последовательность действий точно такая же, кроме первого шага – данные необходимо логарифмировать:

– Логарифмируем данные. Пусть это будет натуральный логарифм – как сказано выше, основание логарифма не влияет на характер распределения (Лист «Лог. данные»).

– Определяем минимум, максимум и размах логарифмов (Лист «Лог. данные»).

– Задаем количество классов группировки и рассчитываем ширину класса по логарифмам (Лист «Лог. данные»).

– Присваиваем каждому значению номер класса (Лист «Шаг 1 – лог масштаб»).

– Для каждого класса рассчитываем количество данных, границы класса и его центр (Лист «Шаг 2 – лог масштаб»).

– Строим гистограмму в логарифмическом масштабе (Лист «Шаг 3 – лог масштаб»).


Гистограмма с правой асимметрией в логарифмическом масштабе


Красивее же, правда? Необходимо отметить, что в реальной работе вам не придется выполнять все эти нудные операции – практически любое ПО, которым вы будете пользоваться, обладает способностью к построению гистограмм – как в натуральном, так и в логарифмическом масштабе. И переход между натуральным и логарифмическим масштабом обычно выполняется с помощью одной «галочки» в настройках графика. Но понимать, что именно произошло и как строить такую гистограмму, необходимо.