Логнормальное распределение
Кроме нормального распределения, также достаточно распространенным является так называемое логарифмически нормальное, или короче – логнормальное распределение: такое, при котором нормальному распределению не противоречат логарифмы значений изучаемой величины. Логнормальное распределение имеет правостороннюю асимметрию – то есть его среднее смещено по оси абсцисс вправо от медианы, а коэффициент асимметрии положителен.
Гистограмма логнормального распределения
При работе с распределением со значительной правой асимметрией (например, логарифмически нормальным распределением) гистограммы, построенные обычным образом – т. е. в «натуральных» единицах, весьма «ненаглядны». Не в том смысле, что прямо вот «глаз не отвести», а в том, что смотрю – и ничего не вижу. Что неудивительно: большинство наблюдений сгруппировано «слева» и попадает всего в несколько классов значений. Соответственно, гистограмма распределения с большой правой асимметрией выглядит, например, как-то так.
Гистограмма с правой асимметрией
В общем, не очень читаемая гистограмма. В этом случае необходимо выполнить симметризацию распределения. Так исторически сложилось, что наиболее часто встречаемым способом симметризации является логарифмирование значений. В принципе, симметризацию можно выполнить, например, с помощью корня – квадратного, кубического и т. д. Но логарифмирование обычно дает наиболее качественную симметризацию.
Итак, логарифм. Логарифм – это показатель степени, в которую надо возвести основание, чтобы получить число, которое подвергается логарифмированию. С первого раза непонятно (со второго – тоже не очень). Зато понятно, что логарифм – это штука, у которой есть основание. Уже хорошо. То есть у вас есть некоторое число, которое вы решили подвергнуть логарифмированию. Для этого надо выбрать основание логарифмирования. Основание – тоже число. То есть для логарифмирования надо два числа: одно – которое подвергается логарифмированию, а второе – основание логарифма. А на выходе имеем показатель степени, в которое надо возвести основание, чтобы получить число, которое под знаком логарифма. Давайте это запишем:
Здесь написано: «логарифм 8 по основанию 2». Возвращаемся к определению. Результатом логарифмирования будет показатель степени, в которое надо возвести основание, чтобы получить число, подвергаемое логарифмированию. В приведенном примере мы логарифмируем 8 по основанию 2. В какую степень надо возвести 2 (основание), чтобы получить 8? Очевидно, в 3-ю. То есть:
Также, исходя из сказанного, совершенно очевидно, что:
Ну и напоминаем, что
Или в общем случае
Опять же, чисто исторически сложилось, что в качестве основания логарифма чаще всего принимается два числа – число «e» и 10. Логарифм по основанию «e» называют натуральным, а по основанию 10 – десятичным. Обычно натуральный логарифм обозначают
а десятичный
Давайте кратко рассмотрим два наиболее часто встречающихся основания логарифма. С десяткой «все ясно» – это основание нашей системы счисления и совершенно логично равно количеству пальцев на руках (если бы наша цивилизация была цивилизацией токарей-математиков, основанием системы счисления могло бы быть и 8, и 6 – в зависимости от удачливости токарей). А что такое «e»? Это такое очень интересное число, которое является одной из фундаментальных математических констант (наряду, например, с числом π) и всплывает в большом количестве реальных проблем. Если есть несколько минут времени, можно посмотреть вот этот