Хейтсбери, которого позднее стали называть просто «калькулятором», в труде 1335 года «Правила решения софизмов» (Regulae solvendi sophismata) даже придумал полуматематический метаязык, которым он пользовался для объяснения многих проблем, считавшихся запретными из-за метабазисных ограничений, например вопрос о соотношении массы и сопротивления применительно к движению[142]. Он ставил вопросы, следуя принятой в схоластике традиции, например: существует ли максимальный вес, который Сократ может поднять, действуя со скоростью А в среде Б, либо минимальный, который он поднять не может[143]. Однако самое важное достижение его и других Оксфордских калькуляторов – это определение скорости в виде отношения расстояния и времени. Аристотель никогда не делал попыток выработать математическое выражение, поскольку рассматривал движение как сложное понятие, включающее изменения места, времени, местонахождения и положения, в которых он видел самостоятельные и потому несопоставимые категории. Оксфордские калькуляторы, образно говоря, размотали веревку Оккама и определили скорость, разделив расстояние, которое проходит объект, на время, которое он затрачивает. Это открытие принято приписывать Галилею[144], однако на самом деле его придумали Оксфордские калькуляторы за три века до него.
Имея за плечами опыт математического описания скорости, Хейтсбери и его коллеги продолжили работу и открыли первый закон современной науки – теорему о средней скорости. Согласно этой теореме, расстояние, которое проходит объект, начиная движение из состояния покоя и двигаясь с равномерным ускорением, равно расстоянию, которое преодолел бы этот же объект за то же время, двигаясь со средней скоростью. Например, если ослик, находящийся в состоянии покоя, начнет двигаться, равномерно увеличивая скорость до десяти миль в час, то за час пути он пройдет то же расстояние, как если бы он не спеша трусил в течение часа с равномерной скоростью пять миль в час – в обоих случаях ослик преодолеет расстояние пять миль.
Научные и математические законы чрезвычайно важны для нашего рассказа, поскольку в их четких формулировках ясно прослеживается принцип работы бритвы Оккама. Напомню утверждение Эйнштейна, которое я приводил во введении: «Важнейшая цель науки – из наименьшего числа гипотез или аксиом логически получить дедуктивным путем максимум реальных результатов»[145],[146]. Физические законы оптики, механики, термодинамики служат наглядным примером того, как можно «получить максимум реальных результатов», опираясь на простые «гипотезы и аксиомы». Чтобы оценить их значение, представьте себе, как бы ответил Аристотель на ваш вопрос о том, какое расстояние пройдет ослик за один час, если он начнет движение из состояния покоя, равномерно ускоряясь до скорости десять миль в час. Он, вероятно, сказал бы, что все зависит от того, из чего сделан ослик, какую форму он имеет, что является перводвигателем и какова конечная причина движения, а еще к каким категориям относятся эти причины. Ослик, скорее всего, испустил бы дух прежде, чем дослушал Аристотеля до конца.
А вот если бы этот вопрос был задан Хейтсбери и его коллегам, они бы ответили, что для этого надо разделить значение конечной скорости на два, а затем умножить полученную величину на время, которое было затрачено на достижение этой скорости. Более того, если бы вы несколько изменили вопрос и спросили, какое расстояние пройдет коза, корова, комета, школяр или пущенная из лука стрела – одним словом, объекты, состоящие из разных субстанций и принадлежащие к разным категориям бытия, то вам бы ответили, что эти различия не меняют сути дела. При проведении вычислений такие детали, как материал, из которого состоит объект, становятся сущностями, которые не следует множить без необходимости.