13. Зачёркнутая цифра

Пусть товарищ ваш задумает какое-нибудь многозначное число, например 847. Предложите ему найти сумму цифр этого числа (8 + 4 + 7= 19) и отнять её от задуманного числа. У загадчика окажется:


847 – 19 = 828.


В том числе, которое получится, пусть он зачеркнёт одну цифру – безразлично какую и сообщит вам все остальные. Вы немедленно называете ему зачёркнутую цифру, хотя не знаете задуманного числа и не видели, что с ним проделывалось.

Как можете вы это выполнить и в чём разгадка фокуса?

Выполняется это очень просто: подыскивается такая цифра, которая вместе с суммой вам сообщённых цифр составила бы ближайшее число, делящееся на 9 без остатка. Если, например, в числе 828 была зачёркнута первая цифра (8) и вам сообщены цифры 2 и 8, то, сложив 2 + 8, вы соображаете, что до ближайшего числа, делящегося на 9, то есть до 18, не хватает 8. Это и есть зачёркнутая цифра.

Почему так получается? Потому что если от какого-либо числа отнять сумму его цифр, то должно остаться число, делящееся на 9, – иначе говоря, такое, сумма цифр которого делится на 9. В самом деле, пусть в задуманном числе цифра сотен – а, цифра десятков – 6 и цифра единиц – с. Значит, всего в этом числе содержится единиц


100a + 10b + c.


Отнимаем от этого числа сумму его цифр a + b + с.


Получим


100a + 10b + с – (a + b + с) = 99a + 9b = 9(11a + b).


Но 9 (11а + b), конечно, делится на 9; значит, при вычитании из числа суммы его цифр всегда должно получиться число, делящееся на 9 без остатка.

При выполнении фокуса может случиться, что сумма сообщённых вам цифр сама делится на 9 (например, 4 и 5). Это показывает, что зачёркнутая цифра есть либо 0, либо 9. Так вы и должны ответить: 0 или 9.

Вот видоизменение того же фокуса: вместо того чтобы из задуманного числа вычитать сумму его цифр, можно вычесть число, полученное из данного какой-либо перестановкой его цифр. Например, из числа 8247 можно вычесть 2748 (если получается число, большее задуманного, то вычитают меньшее из большего). Дальше поступают, как раньше сказано: 8247–2748 = 5499; если зачёркнута цифра 4, то, зная цифры 5, 9, 9, вы соображаете, что ближайшее к 5 + 9 + 9, то есть 23, число, делящееся на 9, есть 27. Значит, зачёркнутая цифра 27–23 = 4.

14. Отгадать число, ничего не спрашивая

Вы предлагаете товарищу задумать любое трёхзначное число (но такое, чтобы разница между крайними цифрами была не меньше 2) и просите затем переставить цифры в обратном порядке. Сделав это, он должен вычесть меньшее число из большего и полученную разность сложить с ней же, но написанной в обратной последовательности цифр. Ничего не спрашивая у загадчика, вы сообщаете ему число, которое у него получилось в конечном итоге.

Если, например, было задумано 467, то загадчик должен выполнить следующие действия:



Этот окончательный результат – 1089 – вы и объявляете загадчику. Как вы можете его узнать?

Рассмотрим задачу в общем виде. Возьмём число с цифрами а, b, с. Оно изобразится так:


100а + 10b + с.


Число с обратным расположением цифр имеет вид:


100с + 10b + а.


Разность между первым и вторым равна:


99а – 99с.


Делаем следующие преобразования:


99а – 99с = 99 (а – с) – 100 (а – с) – (а – с) = 100 (а – с) – 100 + 100 – 10 + 10 – а + с = 100 (а – с – 1) + 90 + (10 – а + с).


Значит, разность состоит из следующих трёх цифр:


сотен: а – с – 1

десятков: 9

единиц: 10 + с – а


Число с обратным расположением цифр изображается так:


100 (10 + с – а) + 90 + (а – с – 1).


Сложив оба выражения


100 (а – с – 1) + 90 + 10 + с – а

+

100 (10 + с – а) + 90 + а – с – 1,


получаем


100 · 9 + 180 + 9 = 1089.