Ваш товарищ берёт одну из костей домино и предлагает вам из остальных 27 составить непрерывную цепь, утверждая, что это всегда возможно, какая бы кость ни была взята. Сам же он удаляется в соседнюю комнату, чтобы не видеть вашей цепи.

Вы приступаете к работе и убеждаетесь, что товарищ ваш прав: 27 костей выложились в одну цепь. Ещё удивительнее то, что товарищ, оставаясь в соседней комнате и не видя вашей цепи, объявляет оттуда, какие числа очков на её концах.

Как может он это знать? И почему он уверен, что из всяких 27 костей домино составится непрерывная цепь?

19. Рамка

Рис. 9 изображает квадратную рамку, выложенную из костей домино с соблюдением правил игры. Стороны рамки равны по длине, но не одинаковы по сумме очков: верхний и левый ряды заключают по 44 очка, остальные же два ряда – 59 и 32.


Рис. 9. Рамка из домино


Можете ли вы выложить такую квадратную рамку, все стороны которой заключали бы одинаковую сумму очков – именно 44?

20. Семь квадратов

Четыре кости домино можно выбрать так, чтобы из них составился квадратик с равной суммой очков на каждой стороне. Образчик вы видите на рис. 10: сложив очки на каждой стороне квадратика, во всех случаях получите 11.


Рис. 10. Квадрат из домино


Можете ли вы из полного набора домино составить одновременно семь таких квадратов? Не требуется, чтобы сумма очков на одной стороне получалась у всех квадратов одна и та же; надо лишь, чтобы каждый квадрат имел на своих четырёх сторонах одинаковую сумму очков.

21. Магические квадраты из домино

На рис. 11 показан квадрат из 18 косточек домино, замечательный тем, что сумма очков любого его ряда – продольного, поперечного или диагонального – одна и та же: 13. Подобные квадраты издавна называются «магическими».

Вам предлагается составить несколько таких же 18-косточковых магических квадратов, но с другой суммой очков в ряду. 13 – наименьшая сумма в рядах магического квадрата, составленного из 18 костей. Наибольшая сумма – 23.

22. Прогрессия из домино

Вы видите на рис. 12 6 косточек домино, выложенных по правилам игры и отличающихся тем, что число очков на косточках (на двух половинах каждой косточки) возрастает на 1: начинаясь с 4, ряд состоит из следующих чисел очков:


4; 5; 6; 7; 8; 9.


Такой ряд чисел, которые возрастают (или убывают) на одну и ту же величину, называется «арифметической прогрессией». В нашем ряду каждое число больше предыдущего на 1; но в прогрессии может быть и любая другая «разность».

Задача состоит в том, чтобы составить ещё несколько шестикосточковых прогрессий.


Рис. 11. Магический квадрат из домино


Рис. 12. Прогрессия из домино


Игра в 15, или такен

Общеизвестная коробочка с 15 нумерованными квадратными шашками имеет любопытную историю, о которой мало кто из игроков подозревает. Расскажем о ней словами немецкого исследователя игр, математика В. Аренса.


Рис. 13. Игра в 15


«Около полувека назад – в конце 70-х годов – вынырнула в Соединённых Штатах «игра в 15»; она быстро распространилась и благодаря несчётному числу усердных игроков, которых она заполонила, превратилась в настоящее общественное бедствие.

То же наблюдалось по эту сторону океана, в Европе. Здесь можно было даже в конках видеть в руках пассажиров коробочки с 15 шашками. В конторах и магазинах хозяева приходили в отчаяние от увлечения своих служащих и вынуждены были воспретить им игру в часы занятий и торговли. Содержатели увеселительных заведений ловко использовали эту манию и устраивали большие игорные турниры. Игра проникла даже в торжественные залы германского Рейхстага. «Как сейчас вижу в Рейхстаге седовласых людей, сосредоточенно рассматривающих в своих руках квадратную коробочку», – вспоминает известный географ и математик Зигмунд Гюнтер, бывший депутатом в годы игорной эпидемии.