Теорема. Сумма двух ограниченных последовательностей есть ограниченная последовательность.
Последовательность {а>n} называется бесконечно малой, если для любого положительного ε существует такой номер N, что, начиная с него, для всех членов последовательности справедливо |a>n| < ε.
Последовательность {а>n} называется бесконечно большой, если для любого положительного Р существует такой номер N, что, начиная с него, для всех членов последовательности справедливо |a>n| < Р.
Предел бесконечно большой последовательности при n > ∞ равен ∞.
Бесконечно большая последовательность не ограничена и, следовательно, расходится.
Теорема о связи бесконечно большой и бесконечно малой последовательностей. Для того чтобы последовательность {а>n} была бесконечно большой, необходимо и достаточно, чтобы последовательность {b>n} b>n = 1 / а>n была бесконечно малой.
Теорема. Если {а>n} – бесконечно большая последовательность, а {b>n} – сходящаяся последовательность, не являющаяся бесконечно малой, то их произведение есть бесконечно большая последовательность.
Свойства бесконечно малых последовательностей:
1) предел бесконечно малой последовательности равен нулю:
2) стационарная последовательность с, с, …, с, … является бесконечно малой тогда, когда с = 0;
3) свойство последовательности быть бесконечно малой не нарушится, если отбросить (прибавить) конечное число членов;
4) пусть {b>n} – бесконечно малая последовательность и для всех n справедливо а>n ≤ b>n, тогда последовательность {а>n} тоже является бесконечно малой;
5) бесконечно малая последовательность ограниченна;
6) сумма (разность) двух бесконечно малых последовательностей есть бесконечно малая последовательность;
7) пусть {а>n} – бесконечно малая последовательность, {b>n} – ограниченная последовательность, тогда их произведение есть бесконечно малая последовательность;
8) пусть {а>n} – бесконечно малая последовательность, а с – любое действительное число, тогда последовательность {са>n} тоже бесконечно мала;
9) произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.
11. Сходящиеся и расходящиеся последовательности. Предел последовательности
Последовательность {а>n} называется сходящейся, если существует такое вещественное число А, что последовательность {а>n – А} является бесконечно малой. Число А будет пределом последовательности:
Сходящуюся последовательность можно представить в виде {a>n} = {A + γ>n}, где {γ>n} – бесконечно малая последовательность.
Бесконечно малые последовательности являются сходящимися с пределом, равным нулю, бесконечно большие – расходящимися (сходящимися к бесконечности).
Точка бесконечной прямой называется предельной точкой последовательности, если в любой ее ε–окрестности содержится бесконечно много элементов данной последовательности.
Лемма. Каждая сходящаяся последовательность имеет только одну предельную точку, совпадающую с ее пределом.
Основные свойства сходящихся последовательностей:
1) всякая сходящаяся последовательность имеет один предел;
2) сходящаяся последовательность {a>n} ограниченна;
3) пусть последовательности {a>n} и {b>n} сходятся и
Теорема сравнения (предельный переход в неравенствах). Пусть заданы последовательности {a>n}, {b>n}. Тогда если последовательности {a>n}, {b>n} таковы, что a>n ≤ (≥) b>n, то
Теорема (принцип двустороннего ограничения).