Для достижения следующего же этапа вакуумирования уже необходимо использовать насос следующего класса, это диффузионный или паромасляной насос. В нём содержится ёмкость с соплом на дне которого налито масло, а под ним печь. Достигая кипения, масло вылетает из сопла через тонкие щели с большим напором, поступая в сосуд, соединённый с вакуумной камерой, где и должен быть вакуум. Вылетающие под большим напором пары масла уносят с собой поступающие молекулы воздуха, а из-за образующейся разности давлений туда поступает весь воздух из ускорителя, словно в воронку или щель.
Из-за того, что температура масляного пара с кислородом высока, она быстро конденсируется на так называемой «рубашке», которая регулярно охлаждается циркулирующей водой с внешней стороны, в большей полости диффузионного насоса, откуда стекает по специальному каналу, соединённому уже с форвакуумным насосом. Там масло отделяется от кислорода и вновь поступает в первую полость. Так происходит второй оборот, уносящий воздух.
При этом поглощение кислородом больше, из-за диффузии, благодаря чему этот вид насосов так и называется и может обеспечивать вакуум до 10>—5 Па.
Следующим же этапом на пути создания высокого вакуума стоит турбомолекулярный насос, который может обеспечить вакуум в крайне широком диапазоне от 10>—1 Па до почти 10>—7 Па. Он основан на том, что это обычный ротор с косыми прорезями, между которыми есть неподвижные пропускные диски. При очень быстром вращении – десятки тысяч в минуту, создаётся достаточно сильное давление для всасывания огромного количества воздуха, при этом его преимущество, при решении проблем с подшипниками основан как раз на отсутствии масла.
Очередной вид насоса, а именно сублимационный основан почти на таком же принципе, что и адсорбционный форвакуумный насос, но в данном случае нагревается некое вещество, а именно сорбент или геттер, как его ещё называют, который входя в полость насоса, подключённый к ускорителю, начинает активно поглощать воздух. Существует большое количество среди подобных химических соединений прекрасно поглощающие кислород, но самым лучшим является титан, который испаряется на титановом испаритель или титановом сублимате, который состоит из вольфрамового нагревателя с обмотанной титановой проволокой, который также выводиться, а проволока обычно редко обновляется. Достигаемый вакуум при действии данного насоса варьируется от 10>—5 до 10>—10 Па.
Одним из самых распространённых и эффективных является магнитно-разрядный насос, который комбинирует два эффекта. По обе стороны этого насоса установлены электромагниты, а перед ними катод и анод. Как только электроны под действием термоэлектронной эмиссии, или точнее получения разности потенциалов между катодом и анодом получают кинетическую энергию покидая катод и направляются к аноду, магнитное поле их закручивает по спирали, что приводит к ионизации кислорода, а ионы уже управляемы и они направляются к катоду. Поскольку катод изготовлен из титана, то при его бомбардировке вылетают ионы катода, которые соединяются с кислородом, подобно принципу сублимационного насоса. Таким образом, достигается вакуум порядка от 10>—1 Па, то есть от конечного уровня форвакуумного насоса до 10>—8 Па, что уже равно уровню вакуума в ускорителях.
Когда же каждый из существующих насосов, вне некоторых редких или экспериментальных моделей, разобран, необходимо остановиться на таких моментах, как расчёты относительно откачки, описание вакуумных соединений с разъёмами, поскольку число таковых в ускорителях крайне немало, а на следующей лекции мы подробно остановимся на принципах измерения уровня высокого вакуума.