ее в ворота, и после этого ничего больше делать не надо, потому что от вас уже ничего не зависит, пока шайба не испытает какое-то следующее воздействие, из-за которого изменит свое движение; в промежутке же она движется «сама», причем по прямой и с заданной скоростью[13]. В этом и состоит «сохранение движения» в отсутствие сил, оно же – закон инерции Галилея, и оно же – первый закон Ньютона. У инертности есть количественная мера: это масса.

Итак, если не воздействовать, то движение сохраняется. Как только этот факт полностью осознан, естественно предположить, что если как-то воздействовать, то движение изменится. Осталось только сказать как, и Ньютон примерно это и говорит, но только не вполне прямо, потому что природа отвечает на этот вопрос не прямо, а косвенно. Чтобы высказываться точнее, нам понадобятся средства. Одно из них – количество движения. Оно тем больше, чем быстрее нечто движется и чем больше его масса. Грузовик, весящий 10 тонн и движущийся со скоростью 30 км/ч, имеет то же количество движения, что и автомобиль весом 2 тонны на скорости 150 км/ч. Количество движения – это просто произведение массы на скорость, с тем только уточнением, что, кроме величины, оно имеет еще и направление – такое же, как у скорости; в общем, как и скорость, это стрелка (вектор). Когда говорят о сохранении (неизменности) таких стрелок, это означает, что не меняется ни их длина, ни направление (шайба в воздушном хоккее летит по прямой, пока на что-нибудь не натолкнется), а изменить стрелку означает изменить ее длину или направление (или и то и другое).

Высказывание, что движение сохраняется, в точной формулировке звучит как «количество движения сохраняется» в отсутствие внешних воздействий (сил). Если же какие-то силы действуют, то количество движения меняется, и, главное, меняется быстро или медленно в зависимости от того, велика ли сила. У каждого изменения есть свой темп (если это не приводит к недоразумениям, можно говорить «скорость изменения»). И вот темп изменения количества движения как раз равен полной действующей силе, сообщает нам Ньютон. Просто равен. Нет никакой возможности сосчитать, сколько раз это высказывание применялось для описания мира. В нем содержится указание на причину: это сила. Сила тяги двигателей самолета, разгоняющегося для взлета, определяет, как быстро меняется количество движения самолета – что в салоне ощущается как эффект прижимания к спинке кресла; в горизонтальном направлении на самолет действуют еще и силы сопротивления (рис. 1.4), и полный баланс этих сил определяет изменение – нет, не скорости, а количества движения; именно поэтому столь важна взлетная масса («взлетный вес») самолета: одна и та же прибавка к количеству движения для самолета, в полтора раза более тяжелого, означает в полтора раза меньшее увеличение скорости. Сила, действующая здесь и сейчас, «не отвечает» за итог – за то, что получится, скажем, в конце взлетно-посадочной полосы. Она отвечает только за то, быстро или нет меняется количество движения здесь и сейчас.


Рис. 1.4. Силы, действующие на самолет во время разгона


Сила говорит количеству движения, как ему изменяться

Ньютон не мог думать о решении задачи про взлетающий самолет, как не мог думать и о решении своих уравнений на компьютере. Я затрудняюсь даже сказать, о какой из этих двух тем он «не мог думать в большей степени». Но современные компьютеры определяют, как будут развиваться события при взлете самолета или ракеты, действуя в точности так, как это наверняка представлял себе Ньютон: если в первую миллисекунду после старта действует определенная сила, то приобретенное количество движения – это и есть та самая сила, умноженная на прошедший малый интервал времени (ту самую миллисекунду). В следующую миллисекунду сила тяги может измениться, а кроме того, появляется сила сопротивления со стороны воздуха. Две силы действуют в противоположных направлениях, одну надо вычесть из другой, а результат умножить снова на выбранный интервал времени длиной в миллисекунду, и так мы узнаем, сколько же количества движения