Ответ на каждое «почему» должен опираться на нечто, что принимается без объяснения, иначе никакое объяснение не останавливается и поэтому перестает быть объяснением. Ответы, которые удается дать довольно близко к тому уровню, где уже приходится разводить руками, называются фундаментальными. В момент формулировки законов Кеплера они сами, вероятно, считались бы фундаментальными, реши тогда кто-нибудь классифицировать подобные утверждения таким образом. Как-никак эти законы были приложимы ко всем известным планетам. Но 80 лет спустя уже нельзя было так думать, потому что фундаментальными оказались другие законы – Ньютона[10]. И это были законы совсем другого сорта. Из них следовало множество утверждений, включая и эллипс для планеты, и параболу для стрелы, не испытывающей сопротивления воздуха (и заодно – направление мысли, позволяющее как-то учесть это сопротивление). События начали разворачиваться стремительно, потому что фокус внимания сместился на причины.

Причины наблюдаемых движений Ньютон сформулировал в виде законов движения – утверждений совсем иного свойства, чем законы Кеплера. Законы Ньютона напрямую ничего не говорили о том, по какой траектории полетит стрела или планета! Вместо этого они предлагали всем заинтересованным лицам действовать более прогрессивным образом: определить траектории самостоятельно (!) на основе буквально нескольких принципов. Ключевой аспект всей схемы – универсальность этих принципов. Их меньше, чем пальцев на руке, но их можно применять снова и снова – и к явлениям уже известным, и к тем, которые могут нам встретиться когда-нибудь в будущем. Это довольно удивительно: ничем не похожие явления подчиняются одним и тем же общим принципам. Слово «принципы» здесь надо понимать в первую очередь как уравнения. Это не уравнения типа x>3 + 3x>2 + 3x – 1 = 0, решением которых могут являться числа (например, как в данном случае, число, примерно равное 0,259921); вместо чисел неизвестным тут является поведение, или, чуть более технически, траектории. Всякое движущееся тело с течением времени описывает траекторию, и предложенная Ньютоном схема сводилась к поиску того, какова эта траектория, т. е. как именно координаты чего-то движущегося зависят от времени. Входные данные для этого состоят в воздействиях, которым подвергается то, что движется, – планета, или стрела, или что угодно. Выражаясь еще чуть более технически, требовалось решить уравнения, где неизвестными вместо чисел были зависимости от времени – функции. Слово «функция» в таком контексте означает не набор обязанностей, а именно характер зависимости: если ваш вклад в банке – возрастающая функция времени, это значит, что сегодня у вас больше денег, чем вчера; иногда становятся интересны и другие подробности, например, сколь быстро эта функция времени растет, меняется ли сама скорость роста и т. д.[11] Все то же самое можно спрашивать и про разные другие функции. Скорость самолета, разгоняющегося на взлетно-посадочной полосе, – тоже функция времени, и важная часть истории состоит в том, через какое время скорость достигнет значения, обеспечивающего отрыв от земли. Чтобы узнать это, необходимо понять причины.

Прежде всего, говорит нам Ньютон, движение «сохраняется», если то, что движется, предоставить самому себе, т. е. никак не воздействовать на него со стороны. Это факт, понятый уже Галилеем; Ньютон определенно действовал не на пустом месте[12]. В воздушном хоккее шайба продолжает двигаться туда, куда вы ее направили, пока не испытает воздействия еще какого-то предмета (бортика или биты). Умение забивать голы в этой игре состоит в том, чтобы привести шайбу в движение устраивающим вас образом –