И Матвей оставил дружную компанию единомышленников на самом интересном моменте.

– Ну, уважаемые коллеги, какие ещё у нас остались вопросы? – обращаясь к Татьяне и Артуру подытожил Борщов.

– А почему Вы называете это место Собачьи бутерброды? – совершенно серьёзно спросил Артур.

Татьяна широко улыбнулась.

– Так называется эту пищу на её родине, – пояснил профессор. – Есть такая старая добрая американская комедия Выйти замуж за миллионера, вырастешь – посмотришь :-)

Первые эксперименты

Артур взял пачку стандартный офисной бумаги формата А4, 500 листов я аккуратно распаковал с малой стороны, затем с помощью Татьяны вынул бумагу из пачки чтобы на столе получилось стопка бумаги, уложенная аккуратно в параллелепипед.

– Давай наклоном слегка эту стопку бумаги в бок, сказала Татьяна, чуть влево или вправо. Артур взял цифровой фотоаппарат и отснял полученную фигуру с разных сторон, как принято на уроках черчения: вид сбоку, вид спереди. Скоро фотографии были выведены на большом экране отцовского компьютера.

– Я думаю, ты стреляешь из пушки по воробьям, – заметила Татьяна, – тебе достаточно было обычной металлической линейки, вот эта с миллиметровой шкалой подходящая.

– Но так я смогу провести настоящий эксперимент! – горячо возразил Артур, – и останутся фото результатов, как учил нас Александр Николаевич.

Повторите и найдите ответы

Попробуйте рассчитать толщину листа, исходя из толщины пачки бумаги и количества листов. Затем рассчитайте площадь двумерной фигуры параллелепипеда и его половины – треугольника.

Можно ли утверждать, что площадь двумерной фигуры, которую видит наблюдатель, остаётся постоянной при смещении стопки листов аккуратно в бок, или нельзя?

Что произойдет с итоговой площадью фигуры, если бумага станет толще?

Напомним, что стандартная офисная бумага весит 80 грамм в расчёте на один квадратный метр, есть и более тонкие и соответственно, толстые листы: 180 грамм/ м2, 360 г/ м2.

Представьте себе катушечный (кассетный) магнитофон. Верно ли утверждение, что сумма квадратов радиусов на бобинах кассет остаётся постоянной?


Рис. 2.6. Сумма квадратов радиусов бобин магнитофонной плёнки остается приблизительно постоянной. Почему?


Аналогичный вопрос для клубков шерсти, перематываемых бабушкой при вязании: верно ли утверждение, что сумма кубов радиусов обоих клубков остаётся примерно постоянной? Для простоты можно условно считать, что шерстяная нить несжимаема.

Спичка длиной в один метр

Вечером Артур с отцом поехали закупать бруски и рейки для строительства навеса от дождя над крыльцом дачи. Отец ходил по рядам вертикально расположенных брусков и реек, внимательно рассматривая пиломатериалы разных сечений и качества обработки.

– Вот и решай, Артур, где выгоднее купить: здесь или на базе? – задумчиво поговаривал отец, – у нас есть карточка на пятипроцентную скидку, но там цена определяется кубометрами заказа, за каждый кубометр древесины просят 8000 руб, а здесь…. а здесь счет идет поштучно за трёхметровые и четырехметровые рейки. Шестиметровые бруски, как на базе, лежат вон там в штабелях, – отец показал рукой.

Артур начал прикидывать в уме: погонажный пиломатериал на базе реализуется стандартными брусками и рейками по шесть метров длины, стоимость за один кубометр составляет 8000 руб. Попробуем посчитать все в кубических дециметрах или привычнее в литрах (ведь бывают жидкие гвозди! Наверное есть и жидкая древесина), допустим вот этот брус десять на десять сантиметров – это шестьдесят литров, а каждый литр древесины – это 8 руб., итого 480 руб. стоил бы этот шестиметровый брус на базе или 80 руб. за один погонный метр, что значит 320 руб. за четыре метра, а здесь 620 руб. за те же четыре метра.