– Верно.

– А ещё обрати внимание на зеркало. – указала пальцем Татьяна. – Это не просто зеркало а гиперплоскость, в данном эксперименте мы с тобой работали с трёхмерным кубом, зеркало было двумерным, то есть на единицу меньшим пространством. Если бы работали с двумерным квадратом, то все отражения я в таком же порядке произвела бы от двух одномерных прямых, которые, в двумерном мире сыграли бы роль зеркал.

– Угу – ответил Артур.

– Ну раз ты говоришь «угу», то что ты скажешь относительно четырёхмерного пространства?

– Да подумаю… так, так, так -так- так – многозначительно наморщил лоб Артур. Кажется… там был бы особый трильяж с трёхмерными зеркалами, где отразился бы четырёхмерный гиперкуб. Но, убей меня, не могу себе как следует это представить!

– Ничего страшного! – успокоила брата Татьяна, – там гиперплоскости стали бы уже трёхмерными, число отражений стало бы: два умножить на два, умножить … – словом, так четыре произведения двойки, итого 2>4 или шестнадцать. Столько же стало бы вершин вместе с отражением. Ну и так далее. . . .– Татьяна озабоченно посмотрела на часы. – Детское время кончилось.  Всё это нам очень пригодиться завтра на встрече. – подытожила Татьяна. – И не ударь лицом в грязь со своими дурацкими, ненужными вопросами!

– Между прочим, я та самая целевая группа, ради которой «производятся все эти танцы». И мои вопросы вовсе не дурацкие – возразил Артур.

….… … … … …… … … … …… … … ……

Пифагоровы тройки на шахматной доске

А тем временем Матвей продолжал:

– Следующие рисунки представляют вписанные друг в друга гиперкубы для случаев размерностей пространства n = 2 то есть плоскости:


Рис. 2.2 Для размерности пространства n = 2, квадраты на плоскости, легко увидеть Пифагорову тройку 3>2+4>2=5>2


– А здесь вершина каждого гиперкуба, выделенного цветом, совпадает с началом координат, в дальнейшем начало координат будет помещаться также в центр гиперкуба. Фигуры в виде композиции гиперкубов начало координат в вершинах и начало координат в центрах гиперкубов преобразуются друг в друга за счет отражения от гиперплоскостей и масштабирования.

Матвей сделал паузу и продемонстрировал на салфетке с пунктирным изображением квадратов, нарисованными трубочкой от коктейля, которую он слегка обмакивал в кофе словно гусиное перо, как легко складывается и раскладывается обратно четыре одинаковых квадрата в разных частях салфетки на рисунке 2.3 выше.

– Обратите внимание, сложить, это все равно, что рассечь фигуру гиперплоскостью, перпендикулярной определенной оси, или просто прямой для двумерного случая, – прокомментировал Матвей, демонстрируя салфетку на просвет, – ну вот, квадраты почти совпали. Так, совмещаем их центры с началом координат, а грани делаем перпендикулярными каждой из n осей. Теперь можно разложить салфетку, что равносильно операции отражения фигуры от выбранной нами гиперплоскости. Далее Матвей снова, продолжил водить карандашом как указкой по следующему рисунку, комментируя:

– Рассмотрим случай целых положительных, т. е. натуральных чисел a, b, c, затем и случай отрицательных чисел. По определению гиперкуб a>n в n-мерном пространстве это множество точек пространства, удовлетворяющее условию: каждая компонента больше чем минус, но меньше, чем плюс половина ребра гиперкуба: a ½a >j <½a.

– Стоп, перебила Татьяна, – Артур, тебе все понятно?

– Примерно половина сказанного, как-то неуверенно ответил, Артур.

Профессор Борщов одобрительно посмотрел на Татьяну и примирительно сказал:

– Ребята, Вы только что сами убедились, как легко я сел в лужу по простому вопросу отражения в зеркале. Предлагаю, отбросить математический формализм в сторону и говорить на языке школьника 3—4 класса. Ок?