Солнце – типичная, рядовая звезда не только в нашей Галактике, но и во всей Вселенной, таких звёзд в ней до 70 %. В астрономической классификации она имеет название жёлтый карлик с температурой на поверхности 5,6 тыс. градусов Кельвина. Есть звёзды и меньше Солнца, так называемые красные карлики, и они могут «жить» до 50 млрд лет. Особый интерес представляют коричневые карлики, не так давно открытые астрономами благодаря инфракрасным телескопам. Эти звёзды в несколько десятков раз больше Юпитера, они есть нечто среднее между газовыми планетными гигантами и собственно звёздами. Время их активного энерговыделения невелико, поэтому они обнаруживают себя только в виде инфракрасного излучения. Тем не менее вокруг них могут существовать планетные системы. Согласно одной из гипотез, наше Солнце имеет такого «компаньона», который находится между Солнечной системой и ближайшей к нам звезде Альфа Центавра, до которой 4,2 световых года.
Существуют звёзды гораздо больше Солнца, и даже сверхгиганты, превосходящие его в сотни и тысячи раз. Самая большая из обнаруженных на сегодняшний день звёзд имеет размер величиной с Солнечную систему. Чем массивнее звезда, тем быстрее она расходует водород. Поэтому время жизни гигантских звёзд в среднем составляет 1 млн лет. Финал их эволюции носит совсем другой характер и сопровождается взрывными процессами, приводящими к образованию таких экзотических объектов, как нейтронные звёзды и чёрные дыры.
Сверхновые – закономерный итог жизненного цикла массивных звёзд
Предположим, мы находимся в комнате, слушаем музыку, смотрим телевизор, читаем газету. Внезапно материя вспыхивает, всё вокруг превращается в облако плазмы, включая и всю нашу Землю, температура которой мгновенно достигает десятков тысяч градусов. Со стороны можно бы было увидеть, как часть пространства внезапно засияла ярче всех светил и даже Солнца. Возможно ли такое? Современная астрофизика однозначно утвердительно отвечает на этот вопрос.
Массивные звёзды заканчивают свой жизненный цикл взрывными процессами, получившие название вспышки сверхновой. В результате выделяется чудовищная энергия, запасённая звездой в ходе нуклеосинтеза. Взрыв приводит к выбросу звёздной материи и расширению облака плазмы с огромными скоростями на значительные расстояния. Если бы Солнце перешло в состояние сверхновой, то Земля, да и вся Солнечная система, были бы уничтожены и превратились в плазменные образования.
Согласно классификации, сверхновые делятся на два типа. Они отличаются по месту положения в Галактике, по светимости, механизмам возникновения и другим показателям. Сверхновые I типа, как правило, встречаются в эллиптических галактиках, что означает их принадлежность к более старому поколению звёзд. Они порождаются звёздами, чей возраст достигает миллиардов лет. Масса таких звёзд не может значительно превосходить массу Солнца. Светимость в момент взрыва быстро нарастает и через три недели достигает максимума. При этом звезда может светить как вся Галактика, т. е. в несколько миллиардов солнц.
Сверхновые II типа встречаются исключительно в спиральных рукавах галактик, которые в основном состоят из молодого поколения звёзд. В этом случае они должны быть более массивными, по крайней мере в шесть раз больше сверхновых I типа, и короткоживущими. Светимость таких звёзд приблизительно в пять раз меньше и убывает быстрее [49].
Согласно современным представлениям, сверхновые I типа возникают в системах двойных звёзд. При этом одна из звёзд должна находиться в состоянии белого карлика, являющегося продуктом эволюции звёзд типа Солнца. Сильное гравитационное поле белого карлика может «забирать» вещество со своей звезды-компаньона. В итоге его масса значительно увеличивается, и, если вначале она могла составлять 1,4 массы Солнца, то за счёт переноса вещества может превысить предел, после чего начинается коллапс. В центре из-за гравитационного сжатия резко возрастает температура и плотность, порождая новые циклы термоядерных превращений. Углерод и другие элементы, синтезировавшиеся в результате жизнедеятельности звезды, вступают в термоядерные реакции с образованием ядер тяжёлых атомов. В результате выделяется огромная энергия. Происходит термоядерный взрыв, полностью разрушающий звезду без какого-либо остатка и выбрасывающий продукты термоядерного горения в окружающий космос с большими скоростями.