Учёные выдвинули несколько претендентов на роль тёмной материи. Они считают, что это нечто совсем иное, чем известные частицы, она слабо взаимодействует с веществом и если вообще взаимодействует, то только лишь через гравитацию. Различают горячую и холодную тёмную материю. Наблюдения показывают, что основная часть объектов, её составляющих, имеет скорость гораздо меньше скорости света. Напротив, горячая тёмная материя обладает субсветовыми скоростями. Аксионы относятся к холодной тёмной материи, и учёные не оставляют попыток обнаружить их экспериментально или в наблюдениях за дальним космосом.
Ещё одним кандидатом являются необычные нейтрино, выходящие за рамки трёх известных разновидностей, которые бы ещё меньше взаимодействовали с веществом [45]. Определённую лепту могли бы внести и микрочёрные дыры, возникшие на ранних этапах формирования Вселенной. Между тем до сих пор обнаружить их не удалось и высказывается мнение, что они уже исчезли за время существования Вселенной. Теоретики выдвигают множество предположений о природе тёмной материи. Среди них встречаются довольно экзотические. К таковым относятся топологические дефекты пространства и материя из параллельных вселенных. Так, тёмная материя может явиться дефектами пространства, возникшими в момент Большого взрыва, содержащими в себе энергию и вызывающими гравитацию. Эта гипотеза может быть проверена экспериментально с помощью орбитальных космических зондов, находящихся на орбите Земли и в пределах Солнечной системы, снабжённых высокоточными атомными часами, потому что при прохождении топологического пространственного дефекта возможно рассогласование хода времени.
С точки зрения гипотезы параллельных Вселенных, гравитация рассматривается как уникальный вид взаимодействия, через который осуществляется связь между мирами. Из этого вытекает, что эффекты тёмной материи могут быть объяснены взаимодействием барионного вещества нашей Вселенной через гравитацию с массивной материей из других измерений. Материя в других измерениях, а, по сути, в параллельных вселенных, вероятно, формирует похожие структуры, как и в нашем мире, а может, создаёт иные формы другим необычным способом, которые проявляются в нашей Вселенной в виде гравитационных галло вокруг галактик и других эффектах, ещё не открытых современной наукой.
Исследование открытых новых реальностей в виде тёмной материи и тёмной энергии не является теоретической игрушкой для мозга астрофизиков. Это может привести и обязательно приведёт к кардинальному изменению нашего знания об окружающем мире, и будет способствовать возникновению принципиально новой техники и новых технологий.
Эволюция звёзд типа Солнца
Ночное небо сияет огромным количеством звёзд. Только в звёздном острове нашей Галактики Млечный Путь их насчитывается не менее 100 млрд [46]. А во Вселенной около 100 млрд Галактик. Так что звёзды – один из самых распространённых космических объектов. Звёздообразование продолжается и поныне, спустя 13,7 млрд лет после Большого взрыва. Как же рождаются звёзды, каковы источники их энергии, и чем заканчивается эволюция таких звёзд, как Солнце?
Звёзды образуются под действием гравитации из газопылевых облаков, расположенных в дисках спиральных галактик. Они представляют собой гигантские газовые молекулярные комплексы. Эти структуры, преимущественно состоящие из молекулярного водорода, достигают впечатляющих масштабов, простираясь на расстояния порядка 300 световых лет. В них находятся компактные зоны, имеющие размер в несколько световых месяцев, плотность 30 000 атомов водорода на 1 кубический сантиметр и температуру 10 градусов Кельвина. Процесс гравитационного сжатия таких зон, приводящих к звёздообразованию, до сих пор изучен недостаточно. В настоящее время для этого используется компьютерное моделирование. Одна из неординарных гипотез заключается в том, что процессы фрагментации и аккреции (приращение массы под действием сил тяготения) запускаются гигантскими чёрными дырами, находящимися в центрах галактик.