Некоторые свойства простых чисел очевидны. За исключением самого маленького из них, двойки, все они нечетные. Сумма цифр простого числа, за исключением тройки, не может быть кратна трем. Они, за исключением пятерки, не могут заканчиваться на цифру 5. Если же число не подпадает под эти правила – и под несколько других, более тонких, – то невозможно посмотреть на него и сразу сказать, простое это число или нет. Да, существуют формулы для простых чисел, но это в значительной степени обман. Эти формулы не дают никакой полезной новой информации о простых числах; это просто хитрый способ зашифровать определение «простоты» в виде формулы. Простые числа – как люди: каждое из них – личность, и они не подчиняются общим правилам.
За тысячелетия математики сумели постепенно расширить свои знания о простых числах. Время от времени и сегодня решаются новые серьезные проблемы, с ними связанные. Однако многие вопросы по-прежнему остаются нерешенными. Некоторые из них фундаментальны и легко формулируются, другие понятны немногим. В этой главе говорится о том, что мы знаем и чего не знаем об этих раздражающих своей неприступностью, но все же фундаментальных числах. Начинается она с установления некоторых базовых понятий: в частности, концепции разложения на простые множители – как представить заданное число в виде произведения простых чисел. Даже этот знакомый процесс заводит нас на глубину сразу же, как только мы начинаем задавать вопросы о по-настоящему эффективных методах поиска простых множителей конкретного числа. Как ни удивительно, определить, является ли данное число простым, относительно несложно, но если число составное, то отыскать его простые множители часто намного труднее.
Разобравшись в основах, перейдем к самой известной из нерешенных задач, связанных с простыми числами, – к проблеме Гольдбаха, которой уже 250 лет. В последнее время в работе над ней достигнут колоссальный прогресс, но полностью она пока не решена. А несколько других задач представят нам примеры того, что еще предстоит сделать в этой важной, но трудно поддающейся исследованию области математики.
Простые числа и разложение на множители знакомы нам из школьного курса арифметики, однако большинство интересных свойств простых чисел на этом уровне не рассматривают и никаких доказательств не представляют. Тому есть веские причины: доказательства даже самых очевидных, на первый взгляд, свойств удивительно сложны. Вместо этого школьников учат некоторым простым методикам работы с простыми числами, акцентируя внимание на вычислениях, где цифры относительно невелики. В результате наши первые впечатления от встречи с простыми числами, как правило, обманчивы.