Pic. 30. Pythagoras



A strikingly bold statement even for our time that thinking is an unconscious process of computations, have been expressed in the 17th century by Gottfried Leibniz. Here, thinking is obviously understood as the process of data processing, which in all cases can be represented as numbers. Then it is clear how computations appear, but understanding of the essence of this process in modern science is so far lacking.34

Pic. 31. Gottfried Leibniz



All definitions of a number have one common basis:

Numbers exist objectively in the sense that they are present in the laws of the world around us, which can be known only through numbers.

From the school bench everyone will learn about numbers from the childish counting: one, two, three, four, five etc. Only the Lord knows where did this counting come from. However, there were attempts to explain its origin using axioms, but the origin of them is as incomprehensible as the counting. Rather, it looks like a certain imitation of the Euclid's "Elements" to add to knowledge the image of science and the appearance of solidity and fundamentality.

The situation is completely different when there is a mathematical definition the essence of a number. Then for a more complete understanding of it, both axioms and a countable quantity become a necessity. Indeed, this definition to the essence of a number includes arguments, actions and a countable quantity. But arguments are also numbers and they should be presented not specifically each of them, but by default i.e. in the form of a generally accepted and unchanged function, which is called the number system, however it no way could to appear without such a notion as a count. Now, axioms turn out to be very appositely and without them a count may be got only from aliens. In reality it was namely so happened since such sources of knowledge as the Euclid's “Elements” or the Diophantus' “Arithmetic” were clearly created not by our, but by a completely different civilization.35

If axioms regulate the count, then they are primary in relation to it. However, there is no need to determine their essence through the introduction of new notions because the meaning of any axioms is precisely in their primacy i.e., they are always essentially the boundaries of knowledge. Thus, axioms receive an even more fundamental status, than until now when they were limited only to the foundation of any separate system. In particular, the system of axioms, developed by the Italian mathematician Giuseppe Peano, very closely correspond to the solution of the problem for constructing a counting system although this main purpose was not explained apparently with a hint on justification the essence the notion of number. The scientific community perceived them only as a kind of “formalization of arithmetic” completely not noticing that these axioms in no way reflect the essence of numbers, but only create the basis for their presentation by default i.e. through a count.

If the main content of axioms is to determine the boundaries of knowledge related to generally accepted methods of representing of numbers, then they should be built both from the definition the essence of the notion of number and in order to ensure the strength and stability of the whole science's building. Until now, due to the lack of such an understanding of the ways of building the foundations of knowledge, the question about the essence of numbers has never even been asked, but only complicated and confused.