3. What is a Number?

3.1. Definition the Notion of Number

The question about the essence the notion of number at all times was for scientists the thing-in-itself. They of course, understood that they could not distinctly answer this question as well as they could not admit in this since this would have a bad effect on maintaining the prestige of science. What is the problem here? The fact is that in all cases a number must be obtained from other numbers, otherwise it cannot be perceived as a number. To understand for example, the number 365, you need to add three hundred with six tens and five units. It follows that the notion of a number does not decompose into components that are qualitatively different from it and in such a way as usual for science i.e. through analysis, it is not possible to penetrate the secret of its essence.

Scientists having a question about the nature of numbers immediately ran into this problem and came to the conclusion that a general definition the notion of number simply does not exist. But not a such was Pierre Fermat who approached this problem from other side. He asked: “Where does the notion of number come from?” And came to the conclusion that his predecessors were the notions “more”, “less” and “equal” as the comparisons’ results of some properties inherent to different objects [30].

If different objects are compared in some property with the same object then such a notion as a measurement appears, so perhaps is the essence of a number possible revealed through a measurement? However, it is not so. In relation to the measurement, the number is primary i.e. if there are no numbers, there can be no also measurements. Understanding the essence of the number becomes possible only after establishing the number is inextricably connect with the notion of “function”.

But this notion is not difficult to determine:

A function is a given sequence of actions with its arguments.

In turn, actions cannot exist on their own i.e. in the composition of the function in addition to them must include the components, with which these actions are performed. These components are called function arguments. From here follows a general definition the notion of number:

Number is an objective reality existing as a countable quantity, which consists of function arguments and actions between them.

For example, a+b+c=d where a, b, c are arguments, d is a countable quantity or the number value.32

To understand what a gap separates Pierre Fermat from the rest of the science’s world, it is enough to compare this simple definition with the understanding existing in today's science [13, 29]. But understanding clearly presenting in the scientific works of Fermat, allowed him still in those distant times to achieve results that for other scientists were either fraught with extreme difficulties or even unattainable. It may be given also the broader definition the notion of number, namely:

A number is a kind of data represented as a function.

This extended definition the notion of number goes beyond frameworks mathematics; therefore, it can be called as general one and the previous definition as mathematical. In this second definition, it is necessary to clarify the essence the notion of “data”, however, for modern science this question is no less difficult than the question about the essence of the notion a number.33

From the general definition the notion of number follows the truth of the famous Pythagoras' statement that everything existing can be reflected as a number. Indeed, if a number is a special kind of information, this statement very bold at that time, was not only justified, but also confirmed by the modern practice of its use on computers where three well-known methods of representing data are implemented: numerical (or digitized), symbolic (or textual) and analog (images, sound, and video). All three methods exist simultaneously.