Для дополнения его придется снова прибегнуть к третьему закону Ньютона (равенство действия и противодействия), рассматривая последний опять-таки не как экспериментальный закон, а как определение. Два тела А и В действуют друг на друга; ускорение А, умноженное на массу А, равно действию В на А, таким же образом, произведение ускорения В на его массу равно противодействию А на В. И так как по определению действие равно противодействию, то массы А и В будут обратно пропорциональны ускорениям двух этих тел. Этим отношение наших двух масс определено, и дело опыта – проверить, что это отношение постоянно.
Все было бы хорошо, если бы два тела А и В были единственными, с которыми приходится считаться, и были изолированы от действия остального мира. Но этого нет; ускорение тела A зависит не только от действия тела В, но и от действия множества других тел: С, D и т. д. Поэтому, чтобы применить предыдущее правило, нужно было бы разложить ускорение тела A на несколько составляющих и выделить из них ту, которая обусловлена действием тела В.
Это разложение было бы еще возможно, если бы мы допустили, что действие С на А просто прикладывается к действию В на А, так что присутствие тела С не изменяет действия В на А и присутствие В не изменяет действия С на А; следовательно, если бы мы допустили, что любые два тела притягиваются, что их взаимное действие направлено по соединяющей их прямой и зависит только от их расстояния, словом – если бы мы допустили гипотезу центральных сил.
Известно, что для определения масс небесных тел пользуются совершенно иным принципом. Закон тяготения учит нас, что притяжение двух тел пропорционально их массам; если r есть расстояние между ними, m и m’ – их массы, K – некоторая постоянная, то притяжение их будет равно
То, что измеряют в этом случае, не есть масса как отношение силы к ускорению – это есть масса притягивающая; это – не инерция тела, а его притягательная способность.
Применение такого косвенного приема не является теоретически необходимым. Легко могло бы случиться, что притяжение было бы обратно пропорционально квадрату расстояния, не будучи пропорционально произведению масс; оно равнялось бы
Но равенство:
не имело бы смысла. При таких условиях все-таки было бы возможно на основании наблюдений над относительными движениями небесных тел измерять их массы.
Но имеем ли мы право допускать гипотезу центральных сил? Верна ли она в точности? Можно ли быть уверенным, что она никогда не окажется в противоречии с опытом? Кто взял бы на себя смелость утверждать это? А ведь если нам придется оставить эту гипотезу, то рушится и все здание, воздвигнутое с таким трудом. И тогда мы уже не имеем более права говорить о составляющей ускорения А, зависящей от действия В. Мы не имеем никакого средства отличить ее от той, которая обусловлена действием С или другого тела. Правило для измерения масс становится неприложимым.
Что же тогда остается от принципа равенства действия и противодействия? Если гипотеза центральных сил отброшена, то этот принцип, очевидно, должен быть сформулирован так: геометрическая равнодействующая всех сил, приложенных к различным телам системы, изолированной от всякого внешнего воздействия, равна нулю. Или, иными словами: движение центра тяжести этой системы является прямолинейным и равномерным.
Здесь-то, казалось бы, мы имеем средство определить массу: положение центра тяжести зависит, очевидно, от значений, какие мы припишем массам; надо распределить эти значения таким образом, чтобы движение центра тяжести было прямолинейно и равномерно; если третий закон Ньютона верен, это всегда возможно и может быть выполнено вообще только одним способом.