Итак, прежде всего надо определить равенство двух сил. Когда говорят, что две силы равны? Тогда, отвечают нам, когда, будучи приложены к одной и той же массе, они сообщают ей одно и то же ускорение или когда, будучи прямо противоположно направлены, они взаимно уравновешиваются. Но это определение совершенно призрачно. Силу, приложенную к данному телу, нельзя отцепить от него и прицепить затем к другому телу вроде того, как отцепляют локомотив, чтобы сцепить его с другим поездом. Поэтому и нельзя знать, какое ускорение данная сила, приложенная к данному телу, сообщила бы другому телу, если бы была к нему приложена. Нельзя также знать, каково было бы действие двух сил, не прямо противоположных, в том случае, если бы они были прямо противоположны.

Это именно определение и стараются, так сказать, материализовать, когда измеряют силу динамометром или уравновешивают ее грузом. Две силы F и F’, которые я для простоты предположу вертикальными и направленными снизу вверх, приложены соответственно к двум телам С и С’; я подвешиваю одно и то же тело веса Р сначала к телу С, потом к С’; если в обоих случаях имеет место равновесие, то я заключу, что две силы F и F’, будучи обе равны весу Р, равны между собою.

Но уверен ли я, что тело Р сохранило тот же вес, когда я перенес его от первого тела ко второму? Вовсе нет, я уверен как раз в противном; я знаю, что напряжение силы тяжести меняется при переходе от одной точки к другой и что оно, например, больше на полюсе, чем на экваторе. Бесспорно, эта разница ничтожна, и на практике я не стал бы принимать ее в расчет; но правильное определение должно обладать математической точностью, а этой точности здесь нет. Сказанное относительно тяжести, очевидно, применимо и к упругой силе динамометра, которая может меняться в зависимости от температуры и от многих других обстоятельств.

Это не все: нельзя сказать, что вес тела Р приложен к телу С и прямо уравновешивает силу F. То, что приложено к телу С, есть действие А тела Р на тело С; тело Р в свою очередь находится под действием, с одной стороны, своего собственного веса, с другой – противодействия R тела С на тело Р. В результате сила F равна силе A, потому что уравновешивает ее; сила А равна R в силу принципа равенства действия противодействию; наконец, сила R равна весу Р, потому что его уравновешивает. Уже как следствие этих трех равенств мы выводим равенство F и веса Р.

Таким образом, при определении равенства двух сил нам приходится опираться на принцип равенства действия и противодействия; значит, этот последний принцип мы должны считать уже не как экспериментальный закон, а как определение.

Итак, устанавливая равенство двух сил, мы пользуемся двумя правилами: равенством двух взаимно уравновешивающихся сил и равенством действия противодействию. Но выше мы видели, что этих двух правил недостаточно; мы вынуждены прибегнуть к третьему правилу и допустить, что некоторые силы, как, например, вес тела, постоянны по величине и направлению. Но это третье правило, как я сказал, представляет собой экспериментальный закон и оно верно лишь приближенно; опирающееся на него определение – плохое определение.

Итак, нам приходится вернуться к определению Кирхгофа: сила равна массе, умноженной на ускорение. Теперь этот «закон Ньютона» выступает уже не как экспериментальный закон, а только как определение. Но это определение еще недостаточно, так как мы не знаем, что такое масса. Правда, он позволяет нам вычислить отношение двух сил, приложенных к одному и тому же телу в разные моменты, но он ничего не сообщает нам об отношении двух сил, приложенных к двум различным телам.