. Этот опыт ясно показывал, что даже единичный электрон вел себя не как единичный объект, а как волна, которая проходила через обе щели одновременно!

Это было крайне интересным. Казалось бы, интерференционная картина действительно показывала, что единичный электрон представляет из себя волну. Исходя из этого можно было предположить, что единичный электрон изначально двигался к двухщелевой пластине в виде одной волны и далее, коснувшись щелей, превращался в две волны (так же, как это делала бы волна воды). Однако, коснувшись экрана, он почему-то не «размазывался» по его поверхности (как это сделала бы обычная волна), а превращался в точку. Физики называют процесс превращения волны электрона в точку коллапсом волны электрона. При этом место такого коллапса (фиксации на экране) каждый раз было различным – время от времени, исходя из интерференционной картины, единичный электрон мог быть зафиксирован, например, на самых дальних точках детектора (точках E и D). Данные точки находятся однозначно дальше от источника волн, чем, например, точки B или C. И тем не менее электрон «выбирал» именно их. Значит, в тот момент, когда электрон фиксировался в точке D, его волна точно не являлась обычной, «плоской» волной (если он все-таки волна), а предпочитала более длинный (и энергетически неэкономичный) путь! Ведь если бы, еще раз, она двигалась как обычная, «стандартная» волна, которая идет «единым фронтом» (допустим, как волна звука или воды, которые нам легко представить), то она неизбежно достигала бы на своем пути сначала ближние точки B и С, т. е. фиксировалась бы именно там! Однако в нашем случае это происходит не так – волна электрона могла «обойти» все ближние точки и зафиксироваться на одной из дальних точек (D, E и т. д.). Отсюда следует, что такая «волна электрона», если она существует, должна была выглядеть как-то иначе, чем обычные волны, к которым мы привыкли в нашей жизни, но как?.. Как может выглядеть «волна», которая, с одной стороны, показывает очень точную интерференцию, а с другой стороны – фиксируется в виде одной-единственной точки, расположенной на различных расстояниях от места своего «входа» при полном отсутствии любых иных видимых следов своей эволюции?

Проблему могла, вероятно, снять мыслительная конструкция, при которой электрон двигался все-таки как частица, но по траектории, определяемой какой-то «хитрой» и пока «невидимой для нас» пространственной волной или полем. Но какой волной или полем? Что они тогда из себя представляют? Из чего состоят? Кто их генерирует? Как они управляют электроном? Куда и как они потом деваются?.. Или в этом случае мы сталкиваемся с какой-то новой «конструкцией» пространственного расположения электронов?..

В любом случае данный эксперимент поставил перед учеными массу вопросов, большинство из которых, увы, оказались не решенными до сих пор!

Но на этом сюрпризы двухщелевого эксперимента не закончились, наоборот, самое интересное открытие было впереди. Конечно же, ученые решили «обхитрить» электрон и, для того чтобы все-таки выяснить, через какую щель он пролетел, установили за пластиной, рядом с одной из щелей, специальный датчик. Если бы этот датчик сработал, это означало бы, что электрон «пролетел» именно через эту щель. Если бы не сработал – это означало бы, что электрон «пролетел» через другую щель.

Разумеется, ученые ставили и два датчика – напротив каждой из щелей – срабатывание обоих датчиков подтвердило бы, что фотон двигается как волна, идущая через обе щели сразу.

Необходимо сказать, что подобные эксперименты были выполнены огромное количество раз, с любыми конструктивными вариантами датчиков. Что же получалось? Любая попытка определить,