Итак, давайте попробуем посмотреть на все системно и без спешки, начав рассмотрение КМ со «странностей первого рода», о которых мы сказали выше.

Глава 1. Странности микромира, или Странности квантовой физики «первого» рода

Повторюсь еще раз – по моему мнению, именно странности первого рода являются первичными, поскольку именно они отражают парадоксальную и в то же время объективную физическую реальность микромира, зафиксированную в результате множества экспериментов. Все теории, которые будут пытаться объяснить результаты полученных экспериментов (например, квантовая механика), по отношению к ним всегда будут являться вторичными.

Давайте посмотрим на эти странности максимально внимательно.

1.1. Странность «первого» рода №1. Корпускулярно-волновой дуализм элементарных частиц

Эта странность микромира является одной из самых известных в своем роде, она очень хорошо демонстрируется с помощью так называемого двухщелевого эксперимента.

Проводят его следующим образом.

Экспериментаторы берут источник ускоренных электронов («электронную пушку»). Далее этот поток электронов должен встретить на своем пути экран с двумя щелями и, миновав их, попасть на детектор. После этого исследователи строят график распределения количества электронов, которые на него попали (рис. 1).


В обычном случае, если бы мы имели дело, например, не с электронами, а, допустим, с ядрами, которые вылетают из обычной пушки, распределение ядер, прошедших через первую и вторую щель и затем попавших на детектор, соответствовало бы итоговой кривой P>12. Очевидно, что бо́льшая часть ядер, пролетевших через первую щель, скопилась бы напротив первой щели, а пролетевших через вторую – напротив второй (см. кривую P>12 на рис. 1).


Рис. 1. Распределение ядер при стрельбе из обычной пушки


В случае же с электронами ученые наблюдали совершенно иную картину, похожую на ту, что бывает при прохождении через щели привычных нам… волн (см. рис. 2). Как будто вместо пулемета у нас появлялся быстро ныряющий поплавок! Результаты экспериментов, которые получат исследователи, решившие провести данный эксперимент, показаны на рис. 2 в виде кривой P’>12. Максимум электронов будет зарегистрирован в центре детектора (а не напротив щелей), и самих максимумов будет не два, как в предыдущем эксперименте, а больше, и т. д.


Рис. 2. Распределение электронов в двухщелевом эксперименте


Такой график распределения волн в физике действительно появляется только при их интерференции. Механика образования интерференции при наличии двух щелей показана на рис. 3:


Рис. 3. Интерференционная картина при прохождении волн

через две щели


Почему же электроны ведут себя в данном эксперименте так, как волны?

На начальном этапе экспериментаторы думали, что это обусловлено взаимодействием электронов между собой на пути движения от электронной пушки к детектору. В этом случае это было бы логичным – какие-то электроны (так же, как и волны) могли бы друг друга усиливать или ослаблять.

Для того чтобы это проверить, было решено испускать электроны не пучком, а поодиночке, друг за другом, чтобы на всем протяжении пути каждый отдельно взятый электрон не мог столкнуться с другими электронами. Если бы картина интерференции исчезла, эта странность микромира была бы объяснена самым простым и понятным нам образом.

Однако полученная в результате этих экспериментов картина не изменилась! Разумеется, при выполнении эксперимента каждый выпущенный электрон (который «летел» друг за другом с некоторым интервалом) сталкивался с детектором всего в одном месте, но постепенно на детекторе вырисовывалась