Первый шаг. Вначале имеем слово длиной в один знак: *, где * обозначает либо точку, либо тире.

Очевидно, слово у нас прочитается единственным образом. Когда конкретное сообщение из одного знака у вас перед глазами, то вы увидите либо • либо –.

Второй шаг. Теперь задано слово длиной уже в два знака: **.

(*)(*), (**) – два способа декодирования. Других комбинаций попросту нет. Здесь круглыми скобками выделены отдельные буквы (однозначные либо двузначные) в полученном нами слове.

Третий шаг. Имеем слово длиной в три знака: ***.

(*)(*)(*), (*)(**), (**)(*) – уже три способа декодирования (будем располагать последовательность из букв в лексикографическом[2] порядке их длины). Как мы помним, буквы из трех знаков (***) по условию нашей задачи не существует.

Четвертый шаг. Имеем слово длиной в четыре знака: ****.

(*)(*)(*)(*), (*)(*)(**), (*)(**)(*), (**)(*)(*), (**)(**) – вот так сюрприз! У нас теперь не четыре, как можно было бы ожидать, а целых пять способов декодирования.

Пятый шаг. Имеем слово длиной в пять знаков: *****.

(*)(*)(*)(*)(*), (*)(*)(*)(**), (*)(*)(**)(*), (*)(**)(*)(*), (**)(*)(*)(*), (*)(**)(**), (**)(*)(**), (**)(**)(*) – восемь вариантов декодирования.

Можно продолжать в том же духе. Но попытаемся угадать закономерность, возникающую в ходе решения задачи.

Выпишем количество способов декодирования, полученных на каждом нашем шаге.


Первый шаг – 1 способ.

Второй шаг – 2 способа.

Третий шаг – 3 способа.

Четвертый шаг – 5 способов.

Пятый шаг – 8 способов.

И т. д…


Теперь хорошо видно, что справа у нас стоят числа Фибоначчи:

f>2 = 1, f>3 = 2, f>4 = 3, f>5 = 5, f>6 = 8….

Так как при решении задачи на первом шаге мы получили второе число Фибоначчи f>2 = 1, на втором шаге – третье число f>3 = 2, то, следовательно, правильным ответом будет двенадцатое число Фибоначчи f>12 = 144, так как полученное слово состоит из одиннадцати знаков.

Какая элегантная и красивая задача! И вполне по силам любому. Надеюсь, вы получили море удовольствия при ее самостоятельном решении и не подглядывали в ответ.

Этюд V

Суеверный писец

Широко использовалась тайнопись и на Руси. Переписчики древних текстов (как правило, монахи) обычно в конце рукописи зашифровывали свое имя. «Употребление тайнописи вызывается здесь традицией «смирения», ради которого пишущий, хотя и желает оставить по себе память, находит нескромным назвать себя открыто»{10}. Возможно, такая скрытность была вызвана боязнью дурного глаза{11}.

В начале рукописи, найденной в Вологде и относящейся к 1643 году, писец сделал следующую приписку, в которой зашифровал свое имя:



Этот вид тайнописи назывался «мудрая литорея» и основывался на замене буквы соответствующим ей числом в кириллической системе счисления.

Дело в том, что вплоть до начала XVIII века на Руси достаточно было поставить знак «титло»

над буквой, чтобы превратить ее в число. Например, первая буква кириллицы «аз» (
) превращалась в единицу (
), третья[3] буква «веди» (
) – в два (
) и т. д. С одиннадцатой буквы «и», числовое значение которой равнялось десяти (
), начинался отсчет десятков. Сотни обозначались с буквы «рцы» (
) и т. д.

Затем полученная с помощью литореи числовая последовательность преобразовывалась посредством простых арифметических действий.

По сути, литорея – шифр простой замены, который не составляет труда дешифровать.

Попробуем угадать имя суеверного (или скромного) писца. Десять «и» в конце имени при сложении дадут сто, что соответствует букве «рцы» (

). Таким образом, получили окончание имени «оръ». А что с первой буквой имени? Имеем пять букв «рцы», то есть пять раз по сто, или пятьсот. Переберем последовательно буквы кириллицы: «рцы» – 100, «слово» (