Другая иллюстрация из более современного языка программирования C++ – оператор присваивания k=i+++++j;, который имеет только одну верную интерпретацию (если операции разделить пробелами): k = i++ + ++j;.
Если невозможно определить границы лексем, то лексический анализ исходного текста должен выполняться поэтапно. Тогда лексический и синтаксический анализаторы должны функционировать параллельно, поочередно обращаясь друг к другу. Лексический анализатор, найдя очередную лексему, передает ее синтаксическому анализатору, тот пытается выполнить анализ считанной части исходной программы и может либо запросить у лексического анализатора следующую лексему, либо потребовать от него вернуться на несколько шагов назад и попробовать выделить лексемы с другими границами. При этом он может сообщить информацию о том, какую лексему следует ожидать. Более подробно такая схема взаимодействия лексического и синтаксического анализаторов описана в [3, 7].
Параллельная работа лексического и синтаксического анализаторов, очевидно, более сложна в реализации, чем их последовательное выполнение. Кроме того, такой подход требует больше вычислительных ресурсов и в общем случае большего времени на анализ исходной программы, так как допускает возврат назад и повторный анализ уже прочитанной части исходного кода. Тем не менее сложность синтаксиса некоторых языков программирования требует именно такого подхода – рассмотренный ранее пример программы на языке Фортран не может быть проанализирован иначе.
Чтобы избежать параллельной работы лексического и синтаксического анализаторов, разработчики компиляторов и языков программирования часто идут на разумные ограничения синтаксиса входного языка. Например, для языка C++ принято соглашение, что при возникновении проблем с определением границ лексемы всегда выбирается лексема максимально возможной длины.
В рассмотренном выше примере для оператора k=i+++++j; это приведет к тому, что при чтении четвертого знака + из двух вариантов лексем (+ – знак сложения в C++, а ++ – оператор инкремента) лексический анализатор выберет самую длинную – ++ (оператор инкремента) – и в целом весь оператор будет разобран как k = i++ ++ +j; (знаки операций разделены пробелами), что неверно, так как семантика языка C++ запрещает два оператора инкремента подряд. Конечно, неверный анализ операторов, аналогичных приведенному в примере (желающие могут убедиться в этом на любом доступном компиляторе языка C++), – незначительная плата за увеличение эффективности работы компилятора и не ограничивает возможности языка (тот же самый оператор может быть записан в виде k=i++ + ++j;, что исключит любые неоднозначности в его анализе). Однако таким же путем для языка Фортран пойти нельзя – разница между оператором присваивания и оператором цикла слишком велика, чтобы ею можно было пренебречь.
В дальнейшем будем исходить из предположения, что все лексемы могут быть однозначно выделены сканером на этапе лексического анализа. Для всех современных языков программирования это действительно так, поскольку их синтаксис разрабатывался с учетом возможностей компиляторов.
Таблица лексем и содержащаяся в ней информация
Результатом работы лексического анализатора является перечень всех найденных в тексте исходной программы лексем с учетом характеристик каждой лексемы. Этот перечень лексем можно представить в виде таблицы, называемой таблицей лексем. Каждой лексеме в таблице лексем соответствует некий уникальный условный код, зависящий от типа лексемы, и дополнительная служебная информация. Таблица лексем в каждой строке должна содержать информацию о виде лексемы, ее типе и, возможно, значении. Обычно структуры данных, служащие для организации такой таблицы, имеют два поля: первое – тип лексемы, второе – указатель на информацию о лексеме.