Так возникла жизнь или эдак – не принципиально, для нас важнее, как она «работает». Для ее поддержания нужен постоянный приток энергии. Для всех живых организмов (и для нас, людей, в том числе) это потенциальная химическая энергия, заключенная в пищевых веществах. Мы заряжаемся пищей, которая содержит избыточные электроны и вдыхаем кислород, который их принимает. Организм расщепляет пищу, отрывая электроны, которые проходят сквозь клетки, участвуя в сложном комплексе химических реакций. В ходе этого процесса клетки вырабатывают аденозинтрифосфат (АТФ) – молекулу, которая действует как накопитель энергии почти во всех живых организмах. То есть для получения энергии организм постоянно должен пропускать через себя поток электронов, получая их с пищей. Мы живем, заряжаясь электронами.

На заре Жизни мир был полон свободных электронов и некоторые организмы приспособились питаться электрической энергией, вкушая голые электроны «без гарнира». Сегодня выявлено около десятка разновидностей древнейших бактерий, потребляющих электричество напрямую31. Причем при закислении среды до рН=2 (что примерно соответствует кислотности первобытного океана и архейской атмосферы) «прожорливость» этих микробных сообществ возрастает на два порядка32. Косвенно это может означать, что разнообразие подобных микроорганизмов в те эпические времена было значительно больше, но, не сумев приспособиться к изменяющейся обстановке, далеко не все из них дожили до наших дней.

Со временем вулканическая вакханалия молодой планеты стала утихать, количество «неприкаянных» электронов в окружающей среде снизилось, и бактериям пришлось переходить на новый рацион питания. Выжили те, которые приспособились встраиваться в геохимические циклы, и использовать электроны, которыми обмениваются химические элементы во время реакций.

В ходе геохимического круговорота, запущенного Луной, первородные космические породы и минералы вступали в химические реакции с образованием новых, уже сугубо земных отложений. Процессы сопровождались выделением или поглощением тепла и энергии, при этом преобладали окислительно-восстановительные реакции, происходящие благодаря обмену электронов между веществами. К чисто химическим реакциям начали присоединяться непрошенные участники – микроорганизмы – так называемые хемоавтотрофы33, используя электроны для своих нужд. С помощью белков-ферментов они научились многократно ускорять реакцию, и, если реакция идет с выделением энергии, она подхватывается живым веществом и используется для синтеза АТФ. Имея запас АТФ хемоавтотрофы получают возможность осуществлять уже те реакции, которые идут с поглощением энергии, например, синтез органики из углекислого газа.

Донорами электронов для хемоавтотрофов архея могли выступать водород и сероводород, двухвалентное железо или соединения аммиака. В поисках пропитания – необходимых электронов и микроэлементов – бактерии с энтузиазмом принялись разлагать горные породы. С той поры хемоавтотрофы ведут с горными породами настоящую войну, воздействуя на них богатым арсеналом химического оружия. Некоторые бактерии в процессе жизнедеятельности выделяют муравьиную, уксусную, пропионовую, азотную, серную (вплоть до 10%-ого раствора, способного прожечь бумагу!) и другие кислоты, разрушающие минералы.

В течение первого миллиарда лет существования биосферы прокариоты здорово «пощипали» каменную оболочку Земли и между делом сократили свою кормовую базу. Но Жизнь не стояла на месте: все это время одна за другой появлялись новые формы микробов и бактерий со своими способами получения энергии из окружающего пространства.