Радиус инерции оси Y-Y = 10.9924..

Расчет параметров сечения шестигранника.



Ось ХХ проходит через вершины на описанном диаметре do.

.d – Вписанный диаметр ( размер под ключ ).

.ss=0,866025403*d*d … Площадь шестигранника через вписанный диаметр.

.do=1,154700538*d … Описанный диаметр.

.ss=0,6495190528*do*do … Площадь шестигранника через описанный диаметр.

.ls=do/2 … Длина грани.

Для дальнейшего расчета представим шестигранник.

Как две трапеции соединенные основаниями.

Далее расчет заимствуем из расчета трапеции.

.h=d/2 … Высота трапеции.

.a=do/2… Верх трапеции ( Длина грани ).

.b=do… Основание трапеции.

Далее расчет трапеции:

.s=h*(b+a)/2.. Площадь трапеции.

Далее расчет по оси Х-Х ( Ось Х-Х параллельна основанию )..

Разложим трапецию на два треугольника и на прямоугольник.

Sp=a*h.. # Площадь прямоугольника.

Jp=h*h*h*a/12.. # Момент инерции прямоугольника.

St=((b-a)/2)*h/2.. # Площадь одного треугольника.

.x=(b-a)/2.. # Основание одного треугольника.

Jt=h*h*h*x/36.. # Момент инерции одного треугольника.

.yt=h/3.. # Нейтральная ось от основания треугольника.

# Центр тяжести системы ( трапеции ) от основания ( нейтральная ось )..

.z=(((St+St)*yt)+(Sp*h/2))/(St+St+Sp).. ( На рисунке z обозначена как V ).

# Момент инерции двух треугольников со смещенным центром.

.at=z-yt.. # Смещение центра тяжести треугольников относительно Ц.Т. трапеции.

Момент инерции двух треугольников по Х-Х со смещенным центром.

Jts=2*(Jt+at*at*(St))..

# Момент инерции прямоугольника по Х-Х со смещенным центром.

.ap=z-(h/2).. # Смещение центра прямоугольника относительно Ц.Т. трапеции.

Jps=Jp+ap*ap*Sp.. Момент инерции прямоугольника по Х-Х со смещенным центром.

.jx=Jps+Jts.. # Момент инерции трапеции по оси ХХ.

Ось ХХ трапеции смещена относительно оси ХХ шестигранника на величину V или z.

Jtz – Момент инерции трапеции по оси смещенной на величину V.

Jtz= jx + V*V*s..

Jse= Jtz+ Jtz.. Момент инерции шестигранника по оси ХХ.

Wse=Jse*2/d.. Момент сопротивления изгибу шестигранника по оси ХХ.

.rm=sqrt(Jse/(s+s))… Радиус инерции оси Х-Х.

..... .....

Контрольные цифры:

Вписанный диаметр ( размер под ключ ) d = 86,60254038..

Описанный диаметр do = 100..

Площадь шестигранника = 6495,190528..

Расчет параметров произвольного сечения.

Заданное произвольное сечение представим как набор элементарных прямоугольников.

Ось Х-Х расположим по нижней стороне первого прямоугольника.

Определяем площадь, расстояние центра тяжести от оси Х-Х и

момент инерции первого прямоугольника.

Определяем площадь, расстояние центра тяжести от оси Х-Х и

момент инерции второго прямоугольника.

Находим расстояние центра тяжести системы двух прямоугольников от оси Х-Х.

Находим момент инерции каждого прямоугольника относительно оси

проходящей через общий центр тяжести.

Находим общий для системы момент инерции и общую площадь.

Рассчитанную систему принимаем как первый прямоугольник.

Добавляем еще один прямоугольник и повторяем выше приведенный расчет.

Этот цикл расчетов ведем, пока не просчитаем все прямоугольники произвольного сечения.

Высота первого прямоугольника = h.

Ширина первого прямоугольника = b.

.j1=b*h*h*h/12… Момент инерции первого прямоугольника.

.w1=j1/(h/2)… Момент сопротивления первого прямоугольника.

.s1=h*b… Площадь сечения первого прямоугольника.

.xc1=h/2… Высота центра тяжести первого прямоугольника от оси Х-Х.

.m1=s1*(h/2)… Момент площади первого прямоугольника относительно оси Х-Х.

# Точка расчета № 1…

Высота второго прямоугольника = h1.

Ширина второго прямоугольника = b1.

Высота расположения основания

второго прямоугольника относительно оси Х-Х = hx.

.j2=b1*h1*h1*h1/12… Момент инерции второго прямоугольника.