(мкKu/м>3) воздуха и т. д.).

1.1.4. Энергия связи и дефект массы атомных ядер

Для уяснения физического процесса и закономерностей выделения ядерной энергии необходимо рассмотреть взаимодействие сил между нуклонами ядра, энергию связи ядра и условия ее освобождения.

Атомы всех элементов обладают определенными значениями массы и энергии, основная часть которых сосредоточена в ядрах. Определенным количеством энергии обладают и ядра атомов, находящихся в нормальном (невозбужденном) состоянии, равновесие нуклонов в которых поддерживается действием ядерных и кулоновских сил. Изменение равновесия этих сил в ядре приводит к изменению его энергетического уровня.

Чтобы удалить друг от друга («растащить») в пределах действия ядерных сил взаимно притягивающиеся нуклоны ядра, необходимо затратить работу. При этом, энергия нуклонов в новом состоянии будет больше их энергии в прежнем состоянии. Если удаленные в пределах радиуса ядра нуклоны предоставить самим себе, то под действием ядерных сил они вернутся в прежнее положение, при этом согласно закону сохранения энергии выделится определенное количество энергии. Однако, энергия всех нуклонов ядра после их сближения будет меньше энергии в положении, когда они были удалены друг от друга.

Аналогично, при образовании ядра происходит «стягивание» ядерными силами его протонов и нейтронов, сопровождающееся выделением энергии. Энергия образовавшегося ядра будет меньше на определенную величину энергии свободных нуклонов этого ядра.

Для разрушения атомного ядра, т. е. для полного выведения всех его нуклонов за пределы действия ядерных сил, нужно затратить энергию, соответствующую работе преодоления ядерных сил. Количество энергии, требующейся для разделения ядра на отдельные нуклоны, называется энергией связи ядра.

Количественно энергия связи ядра равна энергии, освобождающейся при образовании этого ядра из свободных нуклонов. Энергия связи ядра характеризует силы, связывающие его нуклоны, подобно энергии связи молекулы, характеризующей силы химических связей атомов. Как при образовании из атомов молекулы связь между атомами тем сильнее, чем больше выделяется тепловой энергии, так и при образовании из свободных нуклонов атома связь нуклонов тем прочнее (энергия связи ядра тем больше), чем больше выделяется энергии. Ядерные силы в миллионы раз превышают силы химических связей молекул, поэтому энергия связи атомных ядер несоизмеримо больше энергии связи молекул.

Энергия связи является мерой устойчивости ядра: чем она больше, тем ядро устойчивее, тем больше требуется энергии для его разрушения.

Количественные значения энергии связи атомных ядер различных элементов зависят главным образом от количества нуклонов в ядре (массового числа А) и соотношения числа нейтронов и протонов в нем. Чем больше массовое число ядра, тем больше энергия связи ядра.

С уменьшением энергии ядра при образовании его из свободных нуклонов соответственно уменьшается и масса образовавшегося ядра по сравнению с массой всех нуклонов, его образовавших. Эту убыль массы при ядерных превращениях называют дефектом массы. Ее количественное значение для ядра данного изотопа точно соответствует значению энергии связи этого же ядра.

Дефект массы ядра является мерилом энергии связи, по его значению можно определить количество энергии, выделяющейся при образовании ядра из свободных нуклонов.

Удельная энергия связи ядер различных элементов различна. На рис. 1.5 приведены значения удельной энергии связи устойчивых атомных ядер в зависимости от значений их массового числа. Из рисунка видно, что в области малых массовых чисел с возрастанием их значений удельная энергия связи ядер вначале быстро возрастает, достигает максимальных значений (около 8,7 МэВ) при массовых числах равных 60…80, а затем медленно уменьшается. Следовательно, ядра со средней массой являются наиболее устойчивыми.