В профилировочных станках пары роликов по ходу деформирования могут иметь горизонтальное и вертикальное расположение осей вращения. Поэтому ролики действуют на заготовку вертикальными или горизонтальными внешними силами, что позволяет получить как открытые, так и закрытые профили, причем последние могут быть сделаны с внутренним наполнителем.

Профили, полученные гибкой на прессах, на валковых гибочных машинах и на профилегибочных станках, при необходимости в дальнейшем подвергаются разделительным или формоизменяющим операциям.

Профили большой длины из ленты или полосы изготовляют на специальных многороликовых профилировочных станках (рисунок 9).


Рисунок 9 – Гибка на профилировочных станках


Плоская заготовка постепенно изгибается в требуемую форму посредством пропускания ленты через несколько пар вращающихся роликов.

2.1.1.2.2 Производство труб с продольным швом

Формовку ленты (горячекатаной с δ> 1,75 мм, холоднокатаной с δ< 1,75 мм) производят в девяти приводных клетях и одной не приводной. Сварка кромок сформованной трубы осуществляется в сварочной клети, где кромки сближаются вертикальными не приводными роликами.

К подготовительным операциям относятся разматывание рулонов, их резка, правка, при необходимости травление, холодная прокатка, строжка кромок, сварка концов одного рулона с другим и др.

Формовка и электросварка выполняются как непрерывный процесс.

На рисунке 9в показана последовательность профилирования одного конкретного профиля из полосы толщиной 0,8 мм. Производительность станов достигает 15 м/мин и более. Разновидностью профилегибочных станов являются станы для производства труб. На рисунке 10 приведена схема размещения оборудования трубосварочного стана.


1 – весы для взвешивания рулонов; 2 – приемное устройство для рулонов; 3 – консольно-поворотный кран; 4 – загрузочное устройство; 5 – разматыватель штрипса; 6 – девятироликовая правильная машина; 7 – ножницы для отрезки концов; 8 – машина для сварки концов рулонов; 9 – тянущие ролики; 10 – регулятор петли; 11 – петлеобразователь; 12 – передвижные ножницы; 13 – автомат для приварки иглы к концу штрипса; 14 – машина для подачи штрипса в печь; 15 – печь для нагрева штрипса; 16 – шести клетевой формовочно-сварочный стан; 17 – летучие кривошипные ножницы для клетевого отделения иглы; 18 – четырнадцати клетевой редукционный стан; 19 – трехклетьевой калибровочный стан; 20 – летучая пила для разрезки труб на ходу; 21 – винтовая секция холодильника с винтовым сбрасывателем труб; 22 – цепная секция холодильника; 23 – делительное устройство; 24 – рольганги четырех линий отделки труб.

Рисунок 10 – Схема расположения оборудования трубосварочного стана ½ – 2 и последовательность процесса свертывания трубы из полосы в шести парах валков профилезагибочного стана (а)


Трубную заготовку полученную на стане сваривают в трубу в специальных валках после нагрева индуктором. Сварочное устройство стана состоит из индуктора (рисунок 11) или системы контактного токоподвода, магнитопровода, высокочастотного трансформатора и контура конденсаторов. Эти элементы объединены в один блок – сварочную головку.

Сварка токами высокой частоты (ТВЧ) по технологии производства сварных профилей дает чрезвычайно широкий диапазон свариваемых материалов и толщины. Сварка ТВЧ отлично работает при производстве труб, где нагреваемые кромки одинаковы. Энергия, выделяющаяся в кромках, составляет от 40 до 70 % энергии, передаваемой в заготовку трубы. В индукторе теряется примерно 10 % подводимой энергии.

Ток высокой частоты, подводимый к трубной заготовке индукционным или контактным методом, вследствие эффекта близости стягивается на стороны кромок, обращенных друг к другу, и быстро разогревает тонкий слой металла до плавления. Расплавленный металл выдавливается при осадке в сварочных валках вместе с окислами, образуя наружный и внутренний грат. Минимальное количество расплава определяется надежностью удаления загрязнений. Увеличение глубины прогретого слоя приводит к росту потребляемой мощности, возрастанию объема грата и снижению устойчивости тонких кромок при осадке в сварочной клети.