Здесь надо подчеркнуть, что термодинамика (связанная родством с химией) в одном отношении отличается от всех остальных разделов физики, так или иначе выросших из классической механики. В классической механике все процессы обратимы (т. е. могут точно так же происходить в обратную сторону), а картина мира – детерминистическая. Это значит, что если знать все параметры всех тел во Вселенной на какой-то момент времени, то можно точно предсказать ее будущее на любой срок, а также до мельчайших деталей восстановить ее прошлое. А если все процессы обратимы, то объективного времени вообще не существует, а есть только субъективное время, вводимое для нашего удобства, в виде нумерации порядка событий. Даже теория относительности и квантовая механика, перевернувшие физику в XX веке, в этом отношении сохраняют верность классической механике: в уравнении Шрёдингера, лежащем в основе квантовой механики, время остается однозначно обратимым.
В термодинамике все не так: ее модель Вселенной – не вечное вращение планет вокруг Солнца, а паровая машина, в топке которой безвозвратно сгорает топливо. Согласно второму закону термодинамики эта машина постепенно сбавляет обороты, приближаясь к тепловой смерти. Поэтому ни один момент времени не равен предыдущему, события невоспроизводимы, а время объективно существует и имеет однозначное направление. Термодинамика разграничивает обратимые процессы, в которых энтропия не изменяется, и необратимые, в результате которых происходит возрастание энтропии.
Как показал Илья Пригожин, необратимость появляется, только если в системе возможно случайное поведение. Случайность создает различие между прошлым и будущим системы и, следовательно, необратимость. Движение молекул в газе можно считать случайным, и первые необратимые процессы, которые изучала термодинамика, были связаны с поведением газов в тепловых двигателях. В термодинамике картина мира становится стохастической, и предсказать будущее уже невозможно, даже зная все про настоящий момент.
Классическая термодинамика XIX века имела два ограничения. Во-первых, она рассматривала в основном замкнутые системы. Во-вторых, она изучала достаточно медленные процессы, в которых в каждый момент времени система находится близко к равновесию. В XX веке ситуация изменилась. Появились новые виды тепловых двигателей, и при их разработке инженеры столкнулись с явлениями, которые в классической равновесной термодинамике принципиально невозможны. Например, при создании жидкостных ракетных двигателей инженеры столкнулись с серьезной проблемой высокочастотных пульсаций горения. Внезапно в работающем двигателе начинались быстрые – сотни раз в секунду – колебания давления, которые нарастали до тех пор, пока двигатель не взрывался. Чем мощнее двигатель и чем выше давление в нем, тем чаще возникали эти пульсации. Найти причину этих колебаний и устранить их долго не удавалось. Среди людей, которые знали об этой проблеме и не могли ее решить, был и великий математик, президент Академии наук СССР Мстислав Келдыш. И вот в декабре 1964 года в его кабинет пришел молодой биофизик Анатолий Жаботинский, поставил на стол стакан, смешал в нем несколько реактивов, и жидкость в стакане стала менять цвет с красного на синий и обратно. Это была первая признанная колебательная химическая реакция, ныне известная как «реакция Белоусова – Жаботинского» (BZ-reaction). В тонком слое раствора, например, на тарелке, в ней получаются сложные узоры из движущихся колец и спиралей (рис. 5.3). Келдыш сразу понял, что жидкость, меняющая цвет туда-обратно, имеет прямое отношение к неустойчивости горения в ракетном двигателе.