7. Между анатомическими механизмами контроля и когнитивными механизмами существует фундаментальная симметрия. Совместная коэволюция и экзаптация (функциональное перепрофилирование) служат драйверами взаимного расширения механизмов, контролирующих формирование морфофункциональных паттернов и поведенческие цели.

8. Нейроны используют те же биоэлектрические вычислительные стратегии, которые использовались эволюцией еще в древних бактериях. Функциональный изоморфизм (внешнее подобие) между формированием паттернов и когнитивными процессами также отражается в древней молекулярной консервации механизмов: практически идентичные ионные каналы и нейротрансмиттеры распространены повсеместно по всему древу жизни. Биоэлектрическая интеграция помогла развить стратегии управления и когнитивный контент по всему континууму от химических сетей до человеческого разума.

9. Существует глубокая функциональная масштабная инвариантность, проявляющаяся в единой структуре принятия решений отдельными клетками при формировании тела нового организма, работой колонии насекомых и интегрированным поведением человека в обществе: это кибернетические процессы обучения и оптимизации параметров, реализуемые большим количеством субагентов, движимых инфотаксисом и стремлением к устойчивости гомеостаза.

10. Один из основных рычагов управления, используемых эгоистичными агентами, – динамика границ между их «индивидуальностью» и «окружающей средой». Передача сигналов между животными в экосистеме принципиально не отличается от передачи сигналов внутри мозга (или, в более широком охвате масштабов, внутри организма или внутри клетки) – все являются примерами информации, распространяющейся через сети локально-компетентных микроагентов, имеющих свои подвижные границы (Pais-Vieira et al., 2013; Kingsbury et al., 2019; Zhang and Yartsev, 2019).

Гипотеза безмасштабной когнитивности рассматривает опухоли многоклеточных как сжатие вычислительной границы клеточной биосистемы (потенциально обратимое): изолируя себя от физиологических сигналов окружающей ткани, когнитивная граница клетки сжимается до того небольшого размера, который свойственен одноклеточным. Раковые клетки не более эгоистичны, чем соматические клетки многоклеточного животного, но их индивидуальность теперь уменьшена до одной клетки, тогда как нормальные физиологические отношения в здоровых тканях связывают каждую клетку с общей целью организма. Майкл Левин считает, что принципы гипотезы в понимании опухолевого роста применимы не только к клеткам в органах, но и к скоплениям (роям) целых организмов, таких как пчелы и термиты (Seeley, 2009; Turner, 2011): в них наблюдается особая динамика сбоев в координации, имеющая существенные сходства, например между раком и колониями социальных насекомых. Также есть указания на параллели между динамикой рака и деградацией на уровне экосистем (Degregori and Eldredge, 2019). Обоснованно полагать, что аналогичный информационный подход применим и к другим патологиям как организмов, так и надорганизменных индивидуальностей, например роев, сообществ, организаций. То есть принципиально возможна система знаний, занимающаяся их «здоровьем» и «болезнями», которые вполне могут быть соотнесены с их инфекционными, метаболическими, опухолевыми аналогами на уровне организма.

От самогенерации цели к эгоистичности и индивидуальности элементов

Удивительно, насколько формулировки безмасштабной когнитивности Майкла Левина и автономной динамической информационной системы Д. С. Чернавского в применении к реальным биологическим системам перекликаются с концепцией «эгоистичного гена» Ричарда Докинза, который, как ни странно, в своих основных прорывных работах не опирается прямо на принципы статистической физики.